Наука техника технологии. Применение в технике


Рис. 4.12. Рис. 4.13


если ток, подаваемый в схему, которая содержит катушку, резко увеличить, то ток в схеме будет нарастать плавно до достижения своего мак­симального значения.

Способность катушки индуктивности препятствовать изменению силы тока, протекающего через нее, носит название индуктивности этой катушки. Индуктивность обозначается буквой L , единицей ее измерения является генри (Гн).

Постоянная времени -цепи

На рис. 4.13 последовательная цепочка из конденсатора и резистора соединяется через ключ с источником питания. Когда ключ находится в положении 1, конденсатор постепенно заряжается через сопротивление, пока напряжение на нем не достигнет уровня Е т. е. ЭДС или напряжения источника питания.

Процесс заряда конденсатора показан на рис. 4.14(а) экспоненциальной кривой. Время, за которое напряжение на конденсаторе достигает значения 0,63 от максимума, т. е. в данном случае 0,63Е , называется постоянной времени контура или цепи.

Вернемся к рис. 4.13. Если ключ установить в положение 2, конденсатор будет сохранять запасенную энергию. При переведении ключа в положение3 конденсатор начинает разряжаться на землю через резистор R, и напряжение на нем постепенно падает до нуля. Процесс разряда конденсаторапоказан на рис. 4.14(б). В этом случае постоянной времени цепи называется время, за которое напряжение на конденсаторе уменьшается 0,63 от своего максимального значения.


Рис. 4.14. Кривые заряда (а) и разряда (б) конденсатора, где t - постоянная времени.

Как для случая заряда, так и для случая разряда конденсатора через резистор R постоянная времени цепи выражается формулой

где t - постоянная времени в секундах, С - емкость в фарадах, R - сопротивление, выраженное в омах.

Например, для случая С = 10мкФ и R = 10 кОм постоянная времени цепи равна

На рис. 4.15 изображены графики процессов заряда для цепей с малой и с большой постоянной времени.


Рис. 4.15.

Постоянная времени RL -цепи

Рассмотрим схему, изображенную на рис. 4.16. Катушка индуктивности L соединена последовательно с резистором R , имеющим сопротивление 1 кОм. В момент замыкания ключа S ток в цепи равен нулю, хотя под действиемЭДС источника он, казалось бы, должен резко увеличиться. Однако катушка индуктивности, как известно, препятствует всякому изменению силы тока, протекающего через нее, поэтому ток в цепи будет возрастать по экспоненциальному закону, как показано на рис. 4.17. Ток будет возрастать до тех пор, пока не достигнет своего максимального значения. После этого увеличение тока прекратится, а падение напряжения на резисторе R станет равным приложенному напряжению Е. Установившееся значение тока равно

E/ R = 20 В/1 кОм = 20 мА.

Скорость изменения тока в цепи зависит от конкретных значений R и L . Время, необходимое для того, чтобы сила тока достигла значения, равного 0,63 от его максимальной величины, носит название постоянной времени цепи. Постоянная времени вычисляется по формуле L/ R где L выражается в генри, а R - в омах. В этом случае постоянная времени получается в секундах. Используя значения L и R , указанные на рисунке, получаем

Следует заметить, что, чем больше R , тем меньше L/R и тем быстрее изменяется ток в цепи.


Рис. 4.16.


Рис. 4.17.

Сопротивление по постоянному току

Катушка индуктивности, включенная в цепь, не препятствует протеканию постоянного тока, если, конечно, но принимать во внимание очень малое сопротивление провода, из которого она сделана. Следовательно, катушка индуктивности имеет нулевое или очень малое сопротивление и может рассматриваться в цепи постоянного тока как цепь короткого замыкания. Конденсатор же в связи с наличием в нем изолирующего ди­электрика имеет бесконечное или очень большое сопротивление и может рассматриваться в цепи постоянного тока как разрыв.

Векторное представление

Сигнал синусоидальной формы может быть представлен в виде век­тора ОА, вращающегося против часовой стрелки с угловой скоростью ω = 2πf , где f – частота сигнала (рис. 4.18). По мере того как поворачивается вектор, ордината его конца характеризует показанный на рисунке синусоидальный сигнал. Один полный оборот вектора (360°, или 2π) со­ответствует одному полному периоду. Половина оборота (180°, или π) со­ответствует половине периода, и так далее. Таким образом, ось времени, как показано на рисунке, может использоваться для нанесения значений угла, на который повернулся вектор. Максимум сигнала достигается при 90° (1/4 периода), а минимум - при 270° (3/4 периода).

Теперь рассмотрим два синусоидальных сигнала, представленных на рис. 4.19(а) векторами ОА и ОВ соответственно. Если оба сигнала имеют одинаковые частоты, то векторы ОА и ОВ будут вращаться с одинаковой угловой скоростью ω = 2πf . Это означает, что угол между этими векторами


Рис. 4.18.


Рис. 4.19. Разность фаз. Вектор ОА опережает вектор ОВ

(или вектор ОВ отстает от вектора ОА) на угол θ .

изменяться не будет. Говорят, что вектор ОА опережает вектор ОВ на угол θ , а вектор ОВ отстает от вектора ОА на угол в. На рис. 4.19(б) эти сигналы развернуты во времени.

Если оба этих синусоидальных сигнала сложить, то в результате получим другой синусоидальный сигнал, имеющий ту же частоту f , но другую амплитуду. Результирующий сигнал может быть представлен вектором ОТ, который, как показано на рис. 4.19(в), является векторной суммой векторов ОА и ОВ. Вектор ОТ опережает вектор ОВ на угол α и отстает от вектора ОА на угол γ. Дальше вы увидите, что векторное представление является весьма удобным приемом при анализе и расчете цепей переменного тока.

В этом видео рассказывается о катушке индуктивности:

Кто в школе не изучал физику? Для кого-то она была интересна и понятна, а кто-то корпел над учебниками, пытаясь выучить наизусть сложные понятия. Но каждый из нас запомнил, что мир основан на физических знаниях. Сегодня мы поговорим о таких понятиях, как индуктивность тока, индуктивность контура, и узнаем, какие бывают конденсаторы и что такое соленоид.

Электрическая цепь и индуктивность

Индуктивность служит для характеристики магнитных свойств электрической цепи. Ее определяют как коэффициент пропорциональности между текущим электрическим током и магнитным потоком в замкнутом контуре. Поток создается этим током через поверхность контура. Еще одно определение гласит, что индуктивность является параметром электрической цепи и определяет ЭДС самоиндукции. Термин применяется для указания элемента цепи и приходится характеристикой эффекта самоиндукции, который был открыт Д. Генри и М. Фарадеем независимо друг от друга. Индуктивность связана с формой, размером контура и значением магнитной проницаемости окружающей среды. В единице измерения СИ эта величина измеряется в генри и обозначается как L.

Самоиндукция и измерение индуктивности

Индуктивностью называется величина, которая равна отношению магнитного потока, проходящего по всем виткам контура к силе тока:

  • L = N х F: I.

Индуктивность контура находится в зависимости от формы, размеров контура и от магнитных свойств среды, в которой он находится. Если в замкнутом контуре протекает электрический ток, то возникает изменяющееся магнитное поле. Это впоследствии приведет к возникновению ЭДС. Рождение индукционного тока в замкнутом контуре носит название "самоиндукция". По правилу Ленца величина не дает изменяться току в контуре. Если обнаруживается самоиндукция, то можно применять электрическую цепь, в которой параллельно включены резистор и катушка с железным сердечником. Последовательно с ними подсоединены и электрические лампы. В этом случае сопротивление резистора равно сопротивлению на катушки. Результатом будет яркое горение ламп. Явление самоиндукции занимает одно из главных мест в радиотехнике и электротехнике.

Как найти индуктивность

Формула, которая является простейшей для нахождения величины, следующая:

  • L = F: I,

где F - магнитный поток, I - ток в контуре.

Через индуктивность можно выразить ЭДС самоиндукции:

  • Ei = -L х dI: dt.

Из формулы напрашивается вывод о численном равенстве индукции с ЭДС, которое возникает в контуре при изменении силы тока на один амперметр за одну секунду.

Переменная индуктивность дает возможность найти и энергию магнитного поля:

  • W = L I 2: 2.

"Катушка ниток"

Катушка индуктивности представляет собой намотанную изолированную медную проволоку на твердое основание. Что касается изоляции, то выбор материала широк - это и лак, и проводная изоляция, и ткань. Величина магнитного потока зависит от площади цилиндра. Если увеличить ток в катушке, то магнитное поле будет становиться все больше и наоборот.

Если подать электрический ток на катушку, то в ней возникнет напряжение, противоположное напряжению тока, но оно внезапно исчезает. Такого рода напряжение называется самоиндукции. В момент включения напряжения на катушку сила тока меняет свое значение от 0 до некоего числа. Напряжение в этот момент тоже меняет значение, согласно закону Ома:

  • I = U: R,

где I характеризует силу тока, U - показывает напряжение, R - сопротивление катушки.

Еще одной особенной чертой катушки является следующий факт: если разомкнуть цепь "катушка - источник тока", то ЭДС добавится к напряжению. Ток тоже вначале вырастет, а потом пойдет на спад. Отсюда вытекает первый закон коммутации, в котором говорится, что сила тока в катушке индуктивности мгновенно не меняется.

Катушку можно разделить на два вида:

  1. С магнитным наконечником. В роли материала сердца выступают ферриты и железо. Сердечники служат для повышения индуктивности.
  2. С немагнитным. Используются в случаях, когда индуктивность не больше пяти миллиГенри.

Устройства различаются и по внешнему виду, и внутреннему строению. В зависимости от таких параметров находится индуктивность катушки. Формула в каждом случае разная. Например, для однослойной катушки индуктивность будет равна:

  • L = 10µ0ΠN 2 R 2: 9R + 10l.

А вот уже для многослойной другая формула:

  • L= µ0N 2 R 2: 2Π(6R + 9l + 10w).

Основные выводы, связанные с работой катушек:

  1. На цилиндрическом феррите самая большая индуктивность возникает в середине.
  2. Для получения максимальной индуктивности необходимо близко наматывать витки на катушку.
  3. Индуктивность тем меньше, чем меньше количество витков.
  4. В тороидальном сердечнике расстояние между витками не играет роли катушки.
  5. Значение индуктивности зависит от "витков в квадрате".
  6. Если последовательно соединить индуктивности, то их общее значение равно сумме индуктивностей.
  7. При параллельном соединении нужно следить, чтобы индуктивности были разнесены на плате. В противном случае их показания будут неправильными за счет взаимного влияния магнитных полей.

Соленоид

Под этим понятием понимается цилиндрическая обмотка из провода, который может быть намотан в один или несколько слоев. Длина цилиндра значительно больше диаметра. За счет такой особенности при подаче электрического тока в полости соленоида рождается магнитное поле. Скорость изменения магнитного потока пропорциональна изменению тока. Индуктивность соленоида в этом случае рассчитывается следующим образом:

  • df: dt = L dl: dt.

Еще эту разновидность катушек называют электромеханическим исполнительным механизмом с втягиваемым сердечником. В данном случае соленоид снабжается внешним ферромагнитным магнитопроводом - ярмом.

В наше время устройство может соединять в себе гидравлику и электронику. На этой основе созданы четыре модели:

  • Первая способна контролировать линейное давление.
  • Вторая модель отличается от других принудительным управлением блокировки муфты в гидротрансформаторах.
  • Третья модель содержит в своем составе регуляторы давления, отвечающие за работу переключения скоростей.
  • Четвертая управляется гидравлическим способом или клапанами.

Необходимые формулы для расчетов

Чтобы найти индуктивность соленоида, формула применяется следующая:

  • L= µ0n 2 V,

где µ0 показывает магнитную проницаемость вакуума, n - это число витков, V - объем соленоида.

Также провести расчет индуктивности соленоида можно и с помощью еще одной формулы:

  • L = µ0N 2 S: l,

где S - это площадь поперечного сечения, а l - длина соленоида.

Чтобы найти индуктивность соленоида, формула применяется любая, которая подходит по решению к данной задаче.

Работа на постоянном и переменном токе

Магнитное поле, которое создается внутри катушки, направлено вдоль оси, и равно:

  • B= µ0nI,

где µ0 - это магнитная проницаемость вакуума, n - это число витков, а I - значение тока.

Когда ток движется по соленоиду, то катушка запасает энергию, которая равна работе, необходимая для установления тока. Чтобы вычислить в этом случае индуктивность, формула используется следующая:

  • E = LI 2: 2,

где L показывает значение индуктивности, а E - запасающую энергию.

ЭДС самоиндукции возникает при изменении тока в соленоиде.

В случае работы на переменном токе появляется переменное магнитное поле. Направление силы притяжения может изменяться, а может оставаться неизменным. Первый случай возникает при использовании соленоида как электромагнита. А второй, когда якорь сделан из магнитомягкого материала. Соленоид на переменном токе имеет комплексное сопротивление, в которое включаются сопротивление обмотки и ее индуктивность.

Самое распространенное применение соленоидов первого типа (постоянного тока) - это в роли поступательного силового электропривода. Сила зависит от строения сердечника и корпуса. Примерами использования являются работа ножниц при отрезании чеков в кассовых аппаратах, клапаны в двигателях и гидравлических системах, язычки замков. Соленоиды второго типа применяются как индукторы для в

Колебательные контуры

Простейшей резонансной цепью является последовательный колебательный контур, состоящий из включенных катушек индуктивности и конденсатора, через которые протекает переменный ток. Чтобы определить формула используется следующая:

  • XL = W х L,

где XL показывает реактивное сопротивление катушки, а W - круговая частота.

Если используется реактивное то формула будет выглядеть следующим образом:

Важными характеристиками колебательного контура являются резонансная частота, и добротность контура. Первая характеризует частоту, где сопротивление контура имеет активный характер. Вторая показывает, как проходит реактивное сопротивление на резонансной частоте между такими величинами, как емкость и индуктивность колебательного контура. Третья характеристика определяет амплитуду и ширину резонанса и показывает размеры запаса энергии в контуре по сравнению с потерями энергии за один период колебаний. В технике частотные свойства цепей оцениваются при помощи АЧХ. В этом случае цепь рассматривается как четырехполюсник. При изображении графиков используется значение коэффициента передачи цепи по напряжению (К). Эта величина показывает отношение выходного напряжения к входному. Для цепей, которые не содержат источников энергии и различных усилительных элементов, значение коэффициента не больше единицы. Оно стремится к нулю, когда на частотах, отличающихся от резонансной, сопротивление контура имеет высокое значение. Если же величина сопротивления минимальна, то коэффициент близок к единице.

При параллельном колебательном контуре включены два реактивных элемента с разной силой реактивности. Использование такого вида контура подразумевает знание, что при параллельном включении элементов нужно складывать только их проводимости, но не сопротивления. На резонансной частоте суммарная проводимость контура равна нулю, что говорит о бесконечно большом сопротивлении переменному току. Для контура, в котором параллельно включены емкость (C), сопротивление (R) и индуктивность, формула, объединяющая их и добротность (Q), следующая:

  • Q = R√C: L.

При работе параллельного контура за один период колебаний дважды происходит энергетический обмен между конденсатором и катушкой. В этом случае появляется контурный ток, который значительно больше значения тока во внешней цепи.

Работа конденсатора

Устройство представляет собой двухполюсник малой проводимости и с переменным или постоянным значением емкости. Когда конденсатор не заряжен, сопротивление его близко к нулю, в противном случае оно равно бесконечности. Если источник тока отсоединить от данного элемента, то он становится этим источником до своей разрядки. Использование конденсатора в электронике заключается в роли фильтров, которые удаляют помехи. Данное устройство в блоках питания на силовых цепях применяются для подпитки системы при больших нагрузках. Это основано на способности элемента пропускать переменную составляющую, но непостоянный ток. Чем выше частота составляющей, тем меньше у конденсатора сопротивление. В результате через конденсатор глушатся все помехи, которые идут поверх постоянного напряжения.

Сопротивление элемента зависит от емкости. Исходя из этого, правильнее будет ставить конденсаторы с различным объемом, чтобы улавливать разного рода помехи. Благодаря способности устройства пропускать постоянный ток только в период заряда его используют как времязадающий элемент в генераторах или как формирующее звено импульса.

Конденсаторы бывают многих типов. В основном используется классификация по типу диэлектрика, так как этот параметр определяет стабильность емкости, сопротивление изоляции и так далее. Систематизация по данной величине следующая:

  1. Конденсаторы с газообразным диэлектриком.
  2. Вакуумные.
  3. С жидким диэлектриком.
  4. С твердым неорганическим диэлектриком.
  5. С твердым органическим диэлектриком.
  6. Твердотельные.
  7. Электролитические.

Существует классификация конденсаторов по назначению (общий или специальный), по характеру защиты от внешних факторов (защищенные и незащищенные, изолированные и неизолированные, уплотненные и герметизированные), по технике монтажа (для навесного, печатного, поверхностного, с выводами под винт, с защелкивающимися выводами). Также устройства можно различить по способности к изменению емкости:

  1. Постоянные конденсаторы, то есть у которых емкость остается всегда постоянной.
  2. Подстроечные. У них емкость не меняется при работе аппаратуры, но можно ее регулировать разово или периодически.
  3. Переменные. Это конденсаторы, которые допускают в процессе функционирования аппаратуры изменение ее емкости.

Индуктивность и конденсатор

Токоведущие элементы устройства способны создавать его собственную индуктивность. Это такие конструктивные части, как кладки, соединительные шины, токоотводы, выводы и предохранители. Можно создать дополнительную индуктивность конденсатора путем присоединения шин. Режим работы электрической цепи зависит от индуктивности, емкости и активного сопротивления. Формула расчета индуктивности, которая возникает при приближении к резонансной частоте, следующая:

  • Ce = C: (1 - 4Π 2 f 2 LC),

где Ce определяет эффективную емкость конденсатора, C показывает действительную емкость, f - это частота, L - индуктивность.

Значение индуктивности всегда должно учитываться при работе с силовыми конденсаторами. Для импульсных конденсаторов наиболее важна величина собственной индуктивности. Их разряд приходится на индуктивный контур и имеет два вида - апериодический и колебательный.

Индуктивность в конденсаторе находится в зависимости от схемы соединения элементов в нем. Например, при параллельном соединении секций и шин эта величина равна сумме индуктивностей пакета главных шин и выводов. Чтобы найти такого рода индуктивность, формула следующая:

  • Lk = Lp + Lm + Lb,

где Lk показывает индуктивность устройства, Lp -пакета, Lm - главных шин, а Lb - индуктивность выводов.

Если при параллельном соединении ток шины меняется по ее длине, то тогда эквивалентная индуктивность определяется так:

  • Lk = Lc: n + µ0 l х d: (3b) + Lb,

где l - длина шин, b - ее ширина, а d - расстояние между шинами.

Чтобы снизить индуктивность устройства, необходимо токоведущие части конденсатора расположить так, чтобы взаимно компенсировались их магнитные поля. Иными словами, токоведущие части с одинаковым движением тока нужно удалять друг от друга как можно дальше, а с противоположным направлением сближать. При совмещении токоотводов с уменьшением толщины диэлектрика можно снизить индуктивность секции. Этого можно достигнуть еще путем деления одной секции с большим объемом на несколько с более мелкой емкостью.

Катушка индуктивности — винтовая, спиральная или винтоспиральная катушка из свёрнутого изолированного проводника, обладающая значительной индуктивностью при относительно малой ёмкости и малом активном сопротивлении. Как следствие, при протекании через катушку переменного электрического тока, наблюдается её значительная инерционность.

Для увеличения индуктивности применяют сердечники из ферромагнитных материалов: электротехнической стали, пермаллоя, флюкстрола, карбонильного железа, ферритов. Также сердечники используют для изменения индуктивности катушек в небольших пределах.

Существуют также катушки, проводники которых реализованы на печатной плате.

Катушка индуктивности в электрической цепи хорошо проводит постоянный ток и в то же время оказывает сопротивление переменному току, поскольку при изменении тока в катушке возникает ЭДС самоиндукции, препятствующая этому изменению.

Основным параметром катушки индуктивности является её индуктивность , которая определяет, какой поток магнитного поля создаст катушка при протекании через неё тока силой 1 ампер. Типичные значения индуктивностей катушек от десятых долей мкГн до десятков Гн.

Потери в проводах вызваны тремя причинами:

· Провода обмотки обладают омическим (активным) сопротивлением.

· Сопротивление провода обмотки возрастает с ростом частоты, что обусловлено скин-эффектом. Суть эффекта состоит в вытеснении тока в поверхностные слои провода. Как следствие уменьшается полезное сечение проводника и растет сопротивление.

· В проводах обмотки, свитой в спираль, проявляется эффект близости, суть которого состоит в вытеснении тока под воздействием вихревых токов и магнитного поля к периферии намотки. В результате сечение, по которому протекает ток, принимает серповидную форму, что ведёт к дополнительному возрастанию сопротивления провода.

Потери в диэлектрике (изоляции проводов и каркасе катушки) можно отнести к двум категориям:

· Потери от диэлектрика межвиткового конденсатора (межвитковые утечки и прочие потери характерные для диэлектриков конденсаторов).

· Потери от магнитных свойств диэлектрика (эти потери аналогичны потерям в сердечнике).

В общем случае можно заметить что для современных катушек общего применения потери в диэлектрике чаще всего пренебрежимо малы.

Потери в сердечнике складываются из потерь на вихревые токи, потерь на гистерезис и начальных потерь.

Потери на вихревые токи . Ток, протекающий по проводнику, индуцирует ЭДС в окружающих проводниках, например в сердечнике, экране и в проводах соседних витков. Возникающие при этом вихревые токи становятся источником потерь из-за сопротивления проводников.

Разновидности катушек индуктивности

Контурные катушки индуктивности . Эти катушки используются совместно с конденсаторами для получения резонансных контуров. Они должны иметь высокую стабильность, точность и добротность.

Катушки связи . Такие катушки применяются для обеспечения индуктивной связи между отдельными цепями и каскадами. Такая связь позволяет разделить по постоянному току цепи базы и коллектора и т. д. К таким катушкам не предъявляются жёсткие требования на добротность и точность, поэтому они выполняются из тонкого провода в виде двух обмоток небольших габаритов. Основными параметрами этих катушек являются индуктивность и коэффициент связи.

Вариометры. Это катушки, индуктивность которых можно изменять в процессе эксплуатации для перестройки колебательных контуров. Они состоят из двух катушек, соединённых последовательно. Одна из катушек неподвижная (статор), другая располагается внутри первой и вращается (ротор). При изменении положения ротора относительно статора изменяется величина взаимоиндукции, а следовательно, индуктивность вариометра. Такая система позволяет изменять индуктивность в 4 − 5 раз. В ферровариометрах индуктивность изменяется перемещением ферромагнитного сердечника.

Дроссели . Это катушки индуктивности, обладающие высоким сопротивлением переменному току и малым сопротивлением постоянному. Применяются в цепях питания радиотехнических устройств в качестве фильтрующего элемента. Для сетей питания с частотами 50-60 Гц выполняются на сердечниках из трансформаторной стали. На более высоких частотах также применяются сердечники из пермаллоя или феррита. Особая разновидность дросселей — помехоподавляющие ферритовые бочонки (бусины) на проводах.

Сдвоенные дроссели две намотанных встречно катушки индуктивности, используются в фильтрах питания. За счёт встречной намотки и взаимной индукции более эффективны для фильтрации синфазных помех при тех же габаритах. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания; в дифференциальных сигнальных фильтрах цифровых линий, а также в звуковой технике. Т.е. предназначены как для защиты источников питания от попадания в них наведённых высокочастотных сигналов, так и во избежание засорения питающей сети электромагнитными помехами. На низких частотах используется в фильтрах цепей питания и обычно имеет ферромагнитный (из трансформаторной стали) или ферритовый сердечник.

Применение катушек индуктивности

· Катушки индуктивности (совместно с конденсаторами и/или резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров и т. п..

· Катушки индуктивности используются в импульсных стабилизаторах как элемент, накапливающий энергию и преобразующий уровни напряжения.

· Две и более индуктивно связанные катушки образуют трансформатор.

· Катушка индуктивности, питаемая импульсным током от транзисторного ключа, иногда применяется в качестве источника высокого напряжения небольшой мощности в слаботочных схемах, когда создание отдельного высокого питающего напряжения в блоке питания невозможно или экономически нецелесообразно. В этом случае на катушке из-за самоиндукции возникают выбросы высокого напряжения, которые можно использовать в схеме, например, выпрямив и сгладив.

· Катушки используются также в качестве электромагнитов.

· Катушки применяются в качестве источника энергии для возбуждения индуктивно-связанной плазмы.

· Для радиосвязи — излучение и приём электромагнитных волн (магнитная антенна, кольцевая антенна).

o Рамочная антенна

o DDRR

o Индукционная петля

· Для разогрева электропроводящих материалов в индукционных печах.

· Как датчик перемещения: изменение индуктивности катушки может изменяться в широких пределах перемещением (вытаскиванием) сердечника.

· Катушка индуктивности используется в индукционных датчиках магнитного поля. Индукционные магнитометры были разработаны и широко использовались во времена Второй мировой войны.

Эффективные способы намотки, разработанные на нашем предприятии:

Позволяют снять ограничения на диапазоны применяемых напряжений, токов и температур. Снижают сечение провода, стоимость и массу катушек при тех же условиях эксплуатации. Либо позволяют повысить напряжения, токи и температуру эксплуатации при том же сечении провода.

Наши многолетние исследования показали, что наиболее эффективным способом охлаждения является воздушный. Применение дополнительных видов изоляции иногда бывает нежелательно и ухудшает свойства обмоток. Вместо изоляции мы применяем разделение обмотки на секции. Стремимся к увеличению площади контакта провода с мощными потоками воздуха.

1. Разделенная обмотка .

Лучшая альтернатива дополнительной изоляции. Обмотка разделена на любое количество секций, соединенных последовательно. Потенциал между секциями делится на количество секций. Потенциал между слоями делится на количество секций, помноженное на количество слоев. Потенциал между соседними витками в одном слое делится на количество секций, помноженное на количество слоев и количество витков в слое. Таким образом любое опасное пробивное напряжение можно снизить до электрозащитных показателей обыкновенного эмальпровода без применения особых электроизоляционных мер. Чем больше отдельных секций, тем лучше можно организовать охлаждение.

2. Бесконтактная обмотка.

Витки обмотки подвешены в воздухе на специальных растяжках. Не имеют механического, электрического и теплового контакта ни с какими другими материалами катушки, ни с каркасом, ни с корпусом, ни с электроизоляцией. Самое эффективное воздушное охлаждение, тепло- и электроизоляция.

3. Корпус в виде улитки.

Наиболее эффективным способом охлаждения обмоток мы считаем воздушное. Применение такого корпуса с вентиляторами и просчетом аэродинамических характеристик дает значительные преимущества.

4. Двухполупериодная обмотка.

Все новое - это хорошо забытое старое. Разделение обмотки на два плеча и включение через диодный мост дает попеременное включение плеч с частотой сети. В один полупериод одно плечо работает, другое отдыхает. Это позволяет применять обмотки с меньшим сечением. Особенно актуальна двухполупериодная обмотка там, где в небольшие габариты требуется поместить очень мощную обмотку с таким толстым проводом, который невозможно согнуть под требуемыми углами без повреждения. Или промышленность не выпускает настолько толстые шины, и таким образом можно перейти на меньшее сечение.

5. Трубопроводная обмотка.

Для работы на особо высоких температурных режимах. В качестве провода применяется медная труба, циркулирующая жидкость, насосы, теплообменники, хладогенераторы, резервуары.

6. Заливка компаундами с примесями на основе нитрида бора и другими для повышения теплопроводности компаунда. Либо виброустойчивая растяжка с применением специальных техпластин. Применяется на сложных виброударных режимах работы.

Наши специалисты разработают наиболее эффективный способ решения Ваших задач. Мы будем рады с Вами сотрудничать.

Ждем Ваших заказов.

Катушка индуктивности. Дроссель Возьмем отрезок медного провода и намотаем его на карандаш, а затем снимем с карандаша полученную спираль. У нас получился очень необходимой в радиоэлектронике элемент под названием катушка индуктивности. В дальнейшем такую спираль будем называть катушкой. Полученная нами катушка в электронике называется "однослойная цилиндрическая катушка без сердечника".

В промышленности катушки наматывают проводами с низким удельным сопротивлением - медь, алюминий, серебро и т.д. Провода покрывают электротехническим лаком для проедотвращения замыкания между витками катушки. В цепях постоянного тока и в цепях переменного тока катушка обладает различными свойствами, о чем в дальнейшем и будет идти речь.
Вспомним, из физики, что вокруг всякого проводника, по которому протекает электрический ток, образуется магнитное поле. Так как катушка - это проводник скрученный в спираль, то вокруг катушки также образуется магнитное поле. При протекании через катушку постоянного тока iL силовые линии магнитного поля направлены так, как показано на рисунке.


Чем больше количество витков и чем больше сила тока через катушку, тем больше величина магнитного поля.
Параметры катушки характеризуются величиной L которая называется: "индуктивность". Индуктивность зависит от геометрических размеров катушки и количества витков намотки. Следовательно, чем больше ток через катушку и больше индуктивность, тем сильнее магнитное поле.
Если в катушку ввести сердечник из магнитного материала (например сталь), то индуктивность катушки возрастет во много раз. Сам сердечник введенный в катушку, при подаче на катушку постоянного напряжения, намагнитится.


Из сказанного следует, что мы можем рассматривать катушку с сердечником как электрический магнит.
Электромагниты широко используются как в промышленности, так и в быту. Свойства электромагнита используются в электродвигателях постоянного тока. Более всего электромагниты распространены в таких приборах, как электромагнитные реле. Реле, это такие приборы, при подаче напряжения на которые включается электромагнит и происходит замыкание или размыкание мощных контактов.

Реле, следовательно могут коммутировать большие токи и напряжения. Реле, так же, широко используют в системах автоматики. При определенном включении реле могут выполнять логические функции.
Несмотря на простоту конструкции, расчёт индуктивности катушки весьма сложен. Приходится учитывать геометрические размеры, форму, количество витков, тип сердечника и т.д.
Для примера приведём формулу расчета индуктивности L простой однослойной цилиндрической катушки диаметром D, длиной намотки l, числом витков W, без сердечника:
L(мкГн) = W 2 * D * 10 -3 *l / (D + 0,45).
Индуктивность катушки измеряется в единицах - генри (Гн). Величина в 1 генри очень большая единица, поэтому на практике часто применяют кратные единицы:
миллигенри (мГн), 1мГн = 1*10 -3 Гн;
микрогенри (мкГн), 1мкГн = 1*10 -6 Гн.

Вернемся к катушке в цепи постоянного тока. Если катушку из нескольких витков, с сердечником, использовать в качестве электромагнита, т.е. подключить ее к источнику тока, то она перегорит (если мощность источника достаточно велика).

Произойдет это потому, что сопротивление катушки постоянному току очень мало, и соответственно ток через катушку и мощность будут максимальны. В связи с этим, для катушек в цепи постоянного тока, важна не индуктивность, а сопротивление катушки постоянному току. У электромагнитных реле, например, в справочниках указывается сопротивление обмотки и рабочее напряжение.
Как получить высокое сопротивление обмотки катушки, если провод которым они наматываются имеет низкое удельное сопротивление? Для этого используют провод с малой площадью поперечного сечения и наматывают большое количество витков в несколько слоев, например распространенное реле РЭС-9 имеет обмотку проводом диаметром 0,1мм и числом витков порядка 2000.
Иначе обстоит дело, когда катушка включена в цепь переменного тока. Так как ток переменный, то и магнитное поле создаваемое катушкой, тоже будет переменным. Переменное магнитное поле будет создавать сопротивление прохождению тока через катушку. Причем, чем больше частота переменного тока, при неизменной индуктивности катушки, тем больше получается сопротивление.


Избавиться от помех можно если в цепи питания поставить фильтр состоящий из катушки и конденсаторов. Так как катушка имеет низкое сопротивление постоянному току, то постоянное напряжение питания проходит через катушку без затухания, а для помехи сопротивление катушки велико и сигнал помехи ослабляется. Сопротивление конденсатора для помехи наоборот мало и помеха заземляется.
Назначение индуктивно-емкостного фильтра не только защита от помех. Фильтры широко используют для частотной селекции (разделения, выделения) сигналов. Например частота звукового сигнала (частота которую в состоянии услышать человеческое ухо) лежит в диапазоне от 20 Гц до 20000 Гц. Для качественного воспроизведения звуковых сигналов в акустических системах применяют 3 динамика - для воспроизведения низких (НЧ), средних (СЧ) и высоких (ВЧ) частот звукового диапазона.


Динамики включаются через фильтры которые выделяют именно тот диапазон частот, какой должен воспроизводить конкретный динамик.

В связи с тем, что конструктивный расчет катушек индуктивности очень сложен, на практике, в основном, применяют готовые (стандартные) катушки индуктивности. Для фильтров применяют катушки которые называют "дроссель". В радиоаппаратуре применяют катушки с изменяемой индуктивностью - сердечник такой катушки делается подвижным и может перемещаться внутри катушки.


В зависимости от применяемого сердечника индуктивность может возрастать или наоборот уменьшаться. Если применен сердечник из магнитного материала - сталь, феррит..., то индуктивность катушки увеличивается; если сердечник из диамагнитного материала - латунь, алюминий..., то индуктивность катушки уменьшается.
Катушки индуктивности, так же, как резисторы и конденсаторы, для получения заданной индуктивности, можно включать как последовательно, так и параллельно. Формулы расчета результирующей индуктивности Lr аналогичны формулам расчета результирующего сопротивления, а именно: для параллельного включения катушек: 1/Lr = 1/L1 + 1/L2 + ... + 1/Ln; для последовательного включения - Lr = L1 + L2 + ... + Ln.

Трансформаторы Мы знаем, что вокруг катушки, через которую протекает переменный электрический ток, образуется переменное магнитное поле. Если рядом с такой катушкой установить еще одну катушку, то магнитное поле первой катушки создаст в второй катушке электродвижущую силу (ЭДС), то есть на выводах второй катушки появится переменное напряжение.


Такое электромагнитное устройство, состоящее из двух (а иногда и более) катушек, одна из которых подключается и источнику переменного тока называется трансформатор. Трансформаторы широко используются в радио и электронике для преобразования одного напряжения в другое той же частоты.

Для усиления индуктивной связи катушки (в трансформаторах они называются "обмотки") размещаются на одном общем сердечнике. Обмотка подключенная к источнику питания называется первичной, а обмотка к которой подключена нагрузка называется вторичной.
Трансформаторы предназначенные для питания радио и электронной аппаратуры называются силовыми. Силовые трансформаторы, обычно, используют для понижения высокого (220V) напряжения осветительной сети в низкое напряжение порядка 9 ... 80V. В радиоаппаратуре применяют, обычно, стандартные трансформаторы. Кроме вторичного напряжения, для силовых трансформаторов обязательно указывается мощность которую трансформатор может отдавать в нагрузку. Показанный на рисунке трансформатор типа ТП-200 имеет мощность 200 Ватт.


Отношение (k) числа витков первичной обмотки (W1) к числу витков (W2) вторичной обмотки трансформатора называется коэффициентом трансформации k = W1 / W2. Если k больше 1 то трансформатор является понижающим, т.е. напряжение на вторичной обмотке будет меньше напряжения на первичной обмотке в k раз.


Если k меньше 1 то трансформатор является повышающим и напряжение на вторичной обмотке будет больше напряжения на первичной обмотке в k раз. В общем случае напряжение на вторичной обмотке (U2) будет: U2 = U1/k, где U1 - напряжение на первичной обмотке.

Колебательный контур. Рассмотрим схему показанную на Рис.1. Здесь конденсатор С подключен к источнику питания GB через переключатель SA.

Через определенный промежуток времени конденсатор зарядится. Как только конденсатор зарядится переключим переключатель SA на катушку L (Рис.2). Конденсатор С разрядится через низкое сопротивление катушки L, но на этом процесс в цепи параллельно включенных катушки и конденсатора не закончится.
Вспомним, что при прохождении тока через катушку индуктивности вокруг нее образуется магнитное поле. Как только конденсатор разрядился магнитное поле катушки создает в катушке ЭДС, которая создает ток заряда конденсатора (В данном случае I2. Смотрите рисунок.).

Как видно из рисунка направление тока I2 противоположно току I1. За счет ЭДС катушки конденсатор заряжается. Как только конденсатор зарядился он тут же начинает разряжаться через низкое сопротивление катушки и процесс повторяется. В связи с потерями энергии в катушке и конденсаторе ток заряда - разряда постепенно уменьшается и процесс затухает. На графике этот процесс выглядит так, как показано но рисунке.
Параллельное включение катушки и конденсатора называется: "параллельный колебательный контур" или просто "колебательный контур". Колебательный контур обладает замечательными свойствами. Одно из свойств колебательного контура, это равенство периодов (Т) колебательного процесса, то есть частота колебаний (f) является постоянной величиной (смотрите график на рисунке).

Частота колебаний зависит от емкости конденсатора и индуктивности катушки. Частота колебательного контура называется "резонансной частотой" (fр). На рисунке показана математическая запись расчета резонансной частоты колебательного контура. Компьютернаязапись той же формулы выглядит так:
fp = 1 / (2 * pi * sqrt(L * C)), где sqrt означает - корень квадратный.
Рассмотрим схему показанную на рисунке.

Здесь к генератору (G) переменного тока подключен колебательный контур (LC). Ток I проходящий через контур измеряет амперметр переменного тока (А). Мы можем плавно изменять частоту генератора от f1 (см. график) которая меньше резонансной частоты колебательного контура до f2 которая больше резонансной частоты. На этих частотах величина тока максимальна. На частоте резонанса контура fp ток через контур резко падает. Это еще одно замечательное свойство колебательного контура. Мы знаем, что чем больше сопротивление цепи, тем меньше ток в этой цепи. Тогда резонансное сопротивление колебательного контура Rp, будет максимальным именно на частоте резонанса.
Свойство колебательного контура, когда резонансное сопротивление контура на частоте резонанса стремится к бесконечности, широко используется на практике. Например, рассмотрим как работает простой радиоприемник. Радиостанции передают радиосигнал в эфир на определенной частоте. За каждой радиостанцией закреплены определенные частоты.

В нашем примере (см. рисунок) радиостанция имеет частоту передающего сигнала 1200 KHz (килогерц). Приемник принимает через антенну радиосигналы. Радиосигналов в эфире очень много и все они имеют разные частоты. Как нам выделить сигнал нужной радиостанции (в нашем примере с частотой 1200 KHz)?
Для настройки радиоприемника на нужную частоту воспользуемся свойствами колебательного контура. Рассмотрим схему показанную на рисунке. Антенна (А) принимает радиосигналы различных частот. Предположим, что колебательный контур (LC) имеет частоту резонанса равную 1200 KHz, именно ту частоту которая нам нужна.

Тогда радиосигналы у которых частоты не равны 1200 KHz практически без помех пройдут через колебательный контур на землю. Для сигнала с частотой 1200 KHz сопротивление колебательного контура велико, поэтому сигнал пойдет не на землю, а на преобразователь радиосигнала высокой частоты в сигнал звуковой частоты (называется "детектор") и далее на усилитель и динамик.
Для настройки на другую частоту, обычно, в колебательном контуре применяют конденсатор переменной ёмкости (рис.1) С изменением емкости конденсатора изменяется и резонансная частота контура fp, то есть изменяется настройка на другую частоту.

В простых приёмниках (например рассмотренного нами) возникает такое явление, как наравне с основной радиостанцией, на частоту которой настроен колебательный контур, прослушивается и другая радиостанция (с меньшей громкостью) имеющая частоту близкую к частоте основной радиостанции. Это явление возникает потому, что частота (fp1) мешающей радиостанции близка к частоте основной радиостанции и резонансное (Rp1) сопротивление колебательного контура велико (Рис. 2).
Относительно высокое сопротивление колебательного контура, не на частоте резонанса, позволяет мешающему сигналу проходить на детектор и соответственно на усилитель и динамик. Поэтому для колебательного контура существует такое понятие как добротность контура.

На графике представлены две кривые зависимости (А и Б) сопротивления контура от частоты сигнала. Очевидно, что сопротивление Rp1 кривой А, на частоте fp1, больше сопротивления Rp2 кривой Б. Из этого следует, что ослабление мешающего сигнала лучше у контура имеющего кривую Б. В радио и электронике принято говорить, что чем острей кривая, тем лучше добротность контура. Добротность контура зависит от качества изготовления катушки индуктивности и качества применяемого конденсатора переменной ёмкости.
Колебательные контуры, в радиоэлектронике применяются не только для настройки на радиостанции. Широкое применение колебательные контуры нашли в радиоэлектронике как фильтры различных сигналов, а так же в качестве стабилизаторов частоты генераторов переменного тока применяемых в передатчиках и других приборах.

Ток, напряжение и э. д. с. самоиндукции . При включении в цепь пременного тока индуктивности (катушки индуктивности, потерями в которой можно пренебречь) (рис. 178, а) изменяющийся ток непрерывно индуцирует в ней э. д. с. самоиндукции

e L = -L ?i / ?t (68)

где?i/?t- скорость изменения тока.

Рассматривая график изменения силы тока i (рис. 178,б), можно установить, что скорость его изменения?i/?t будет наибольшей в моменты времени, когда угол? равен 0; 180 и 360°. Следовательно, в эти минуты времени э. д. с. имеет наибольшее значение. В моменты времени, когда угол?t равен 90° и 270°, скорость изменения тока?i/?t = 0 и поэтому э. д. с. e L = 0.

Э. д. с. самоиндукции е согласно правилу Ленца направлена так, чтобы препятствовать изменению тока. Поэтому в первую четверть периода, когда ток i увеличивается, э. д. с. e L имеет отрицательное значение (направлена против тока); во вторую четверть периода, когда ток i уменьшается, э. д. с. e L имеет положительное значение (совпадает по направлению с током). В третью четверть периода ток i изменяет свое направление и увеличивается, поэтому э. д. с. самоиндукции e L направлена против тока и имеет положительное значение. В четвертую четверть периода ток i уменьшается и э. д. с. самоиндукции e L стремится поддержать прежнее направление тока, т. е. имеет отрицательное значение. Таким образом, э. д. с. самоиндукции e L отстает по фазе от тока i на угол 90°.

Так как в цепи, куда включена индуктивность L, отсутствует активное сопротивление (рассматривается идеальная катушка индуктивности), то по второму закону Кирхгофа u+e L =0, т. е. u = -e L Следовательно, напряжение источника всегда равно по величине и противоположно по направлению э. д. с. самоиндукции.

Из рассмотрения кривых (см. рис. 178,б) видно, что кривая напряжения и сдвинута относительно кривой силы тока i на четверть периода, т. е. на угол 90°. При этом напряжение достигает наибольших и нулевых значений раньше, чем ток. Следовательно,

Рис. 178. Схема включения в цепь переменного тока индуктивности (а), кривые тока I, напряжения и, э.д.с. e L (б) и векторная диаграмма (в)

при включении в цепь переменного тока индуктивности ток i отстает по фазе от напряжения и на угол 90° или, что то же самое, напряжение и опережает ток по фазе на угол 90° (рис. 178, в).

Индуктивное сопротивление. Сопротивление катушки или проводника переменному току, вызванное действием э. д. с. самоиндукции, называется индуктивным сопротивлением. Оно обозначается X L и измеряется в омах. Физическая природа индуктивного сопротивления совершенно другая, чем активного. Э. д. с. самоиндукции e L направлена против приложенного напряжения u, которое заставляет изменяться ток; согласно закону Ленца она препятствует изменению тока i, т. е. оказывает прохождению переменного тока определенное сопротивление.

Чем большая э. д. с. самоиндукции e L индуцируется в проводнике (катушке), тем большее они имеют индуктивное сопротивление X L . Э. д. с. самоиндукции согласно формуле (68) прямо пропорциональна индуктивности L и скорости изменения тока?i/?t, т. е. частоте его изменения f (значению?). Поэтому индуктивное сопротивление

X L = ?L

Следовательно, индуктивное сопротивление не зависит от материала, из которого изготовлен проводник (катушка), и от площади поперечного сечения проводника.

Закон Ома для цепи с индуктивностью

I = U / x L = U / (?L)

Электрическая мощность. Рассмотрим, как изменяется электрическая мощность в цепи переменного тока с индуктивностью. Мгновенное значение мощности р, равное произведению мгновенных значений силы тока i и напряжения и, можно получить графическим путем, перемножая ординаты кривых тока и напряжения при различных углах?t. Кривая мгновенной мощности р (рис. 179, а) представляет собой синусоиду, которая изменяется с двойной частотой 2? по сравнению с частотой изменения тока i и напряжения и.

При рассмотрении этой кривой видно, что мощность р может иметь положительные и отрицательные значения. В течение первой четверти периода ток и напряжение положительны и мощность p = ui также положительна. Во второй четверти периода ток положителен, а напряжение отрицательно; следовательно, мощность р будет отрицательна. В течение третьей четверти периода мощность снова становится положительной, а в течение четвертой четверти - отрицательной.

Понятие положительной и отрицательной электрической мощности физически определяет направление потока энергии. Положительный знак мощности означает, что электрическая энергия W передается от источника к приемнику; отрицательный знак мощности означает, что электрическая энергия W переходит от приемника к источнику. Следовательно, при включении в цепь переменного тока индуктивности возникает непрерывный колебательный процесс обмена энергией между источником и индуктивностью, при котором не создается никакой работы. В первую и третью четверти периода мощность положительна, т. е. индуктивность получает энергию W от источника (см. стрелки W) и накапливает ее в своем магнитном поле. Во вторую и четвертую четверти периода индуктивность отдает накопленную энергию W источнику. При этом протекание по цепи тока поддерживается благодаря действию э.д. с. самоиндукции e L .

Таким образом, в целом за период в индуктивное сопротивление не поступает электрическая энергия (на это указывает то, что среднее значение мощности за период равно нулю). Для того чтобы подчеркнуть указанную особенность индуктивного сопротивления, его относят к группе реактивных сопротивлений, т. е. сопротивлений, которые в цепи переменного тока в целом за период не потребляют электрической энергии. Следует отметить, что в реальные катушки индуктивности поступает некоторая энергия от источника переменного тока из-за наличия активного сопротивления проводов, из которых выполнены эти катушки. Эта энергия превращается в тепло.

Так как среднее значение мощности в цепи с индуктивностью равно нулю, для характеристики процесса обмена энергией между источником и индуктивностью введено понятие реактивной мощности индуктивности :

Q L = U L I

где U L - напряжение, приложенное к индуктивности L (действующее значение).

Реактивная мощность измеряется в варах (вар) и киловарах (квар). Наименование единицы происходит от первых букв слов вольт-амперреактивный. Реактивную мощность можно выразить также в виде

Q L = U 2 L/X L или Q L = I 2 X L

Способы соединения катушек индуктивности. В цепях переменного тока приходится соединять катушки индуктивности последовательно и параллельно.
При последовательном соединении катушек индуктивности эквивалентная индуктивность L эк равна сумме индуктивностей; например, при трех катушках с индуктивностями L 1 , L 2 и L 3 (рис. 180, а)

L эк = L 1 + L 2 + L 3

В этом случае эквивалентное индуктивное сопротивление

X Lэк = X L1 + X L2 + X L3

При параллельном соединении катушек индуктивности (рис. 180,б) для эквивалентной индуктивности имеем:

1 /L эк = 1 /L 1 + 1 /L 2 + 1 /L 3

для эквивалентного индуктивного сопротивления

1 /X Lэк = 1 /X L1 + 1 /X L2 + 1 /X L3