Принцип работы транзистора мдп н типа. Разновидности полевых транзисторов

На принципиальных схемах можно встретить обозначения полевого транзистора той или иной разновидности.

Чтобы не запутаться и получить наиболее полное представление о том, какой всё-таки транзистор используется в схеме, сопоставим условное графическое обозначение униполярного транзистора и его отличительные свойства, и особенности.

Независимо от разновидности полевого транзистора он имеет три вывода. Один из них называется Затвор (З). Затвор является управляющим электродом, на него подают управляющее напряжение. Следующий вывод зовётся Исток (И). Исток аналогичен эмиттеру у биполярных транзисторов. Третий вывод именуется Сток (С). Сток является выводом, с которого снимается выходной ток.

На зарубежных электронных схемах можно увидеть следующее обозначение выводов униполярных транзисторов:

    G – затвор (от англ. – G ate «затвор», «ворота»);

    S – исток (от англ. – S ource «источник», «начало»);

    D – сток (от англ. – D rain «отток», «утечка»).

Зная зарубежные обозначения выводов полевого транзистора, будет легко разобраться в схемах импортной электроники.

Обозначение полевого транзистора с управляющим p-n – переходом (J-FET).

Итак. Транзистор с управляющим p-n – переходом обозначается на схемах так:


n-канальный J-FET


p-канальный J-FET

В зависимости от типа носителей, которые используются для формирования проводящего канала (область, через которую течёт регулируемый ток), данные транзисторы могут быть n-канальные и p-канальные. На графическом обозначении видно, что n-канальные изображаются со стрелкой, направленной внутрь, а p-канальные наружу.

Обозначение МДП-транзистора.

Униполярные транзисторы МДП типа (MOSFET) имеют немного иное условное графическое обозначение, нежели J-FET"ы c управляющим p-n переходом. MOSFET"ы также могут быть как n-канальными, так и p-канальными.

MOSFET"ы существуют двух типов: со встроенным каналом и индуцированным каналом .

В чём разница?

Разница в том, что транзистор с индуцированным каналом открывается только при подаче на затвор положительного или только отрицательного порогового напряжения. Пороговое напряжение (U пор ) – это напряжение между выводом затвора и истока, при котором полевой транзистор открывается и через него начинает протекать ток стока (I c ).

Полярность порогового напряжения зависит от типа канала. Для мосфетов с p-каналом к затвору необходимо приложить отрицательное «-» напряжение, а для тех, что с n-каналом, положительное «+» напряжение. Мосфеты с индуцированным каналом ещё называют транзисторами обогащённого типа . Поэтому, если услышите, что говориться о мосфете обогащенного типа – знайте, это транзистор с индуцированным каналом. Далее показано его условное обозначение.


n-канальный MOSFET


p-канальный MOSFET

Основное отличие МДП-транзистора с индуцированным каналом от полевого транзистора со встроенным каналом заключается в том, что он открывается только при определённом значении (U пороговое) положительного, либо отрицательного напряжения (зависит от типа канала – n или p).

Транзистор же со встроенным каналом открывается уже при «0», а при отрицательном напряжении на затворе работает в обеднённом режиме (тоже открыт, но пропускает меньше тока). Если же к затвору приложить положительное «+» напряжение, то он продолжит открываться и перейдёт в так называемый режим обогащения - ток стока будет увеличиваться. Данный пример описывает работу n-канального mosfet"а со встроенным каналом. Их ещё называют транзисторами обеднённого типа . Далее показано их условное изображение на схемах.



На условном графическом обозначении отличить транзистор с индуцированным каналом от транзистора со встроенным каналом можно по разрыву вертикальной черты.

Иногда в технической литературе можно увидеть изображение МОП-транзистора с четвёртым выводом, который является продолжением линии стрелки указывающей тип канала. Так вот, четвёртый вывод – это вывод подложки (substrate). Такое изображение мосфета применяется, как правило, для описания дискретного (т.е. отдельного) транзистора и используется лишь как наглядная модель. В процессе производства подложку обычно соединяют с выводом истока.


MOSFET с выводом подложки (substrate)


Обозначение мощного МОП-транзистора

В результате соединения истока и подложки в структуре полевого mosfet"а между истоком и стоком образуется встроенный диод . На работу прибора данный диод не влияет, поскольку в схему он включен в обратном направлении. В некоторых случаях, встроенный диод, который образуется из-за технологических особенностей изготовления мощного MOSFET"а можно использовать на практике. В последних поколениях мощных МОП-транзисторов встроенный диод используется для защиты самого элемента.


Встроенный диод на условном обозначении мощного МДП-транзистора может и не указываться, хотя реально такой диод присутствует в любом мощном полевике.

Лекция 14.

Такие транзисторы сокращенно называют МДП-транзисторами. Они могут быть двух типов: транзисторы с индуцированным каналом и транзисторы со встроенным каналом. В первых из них канал возникает под действием управляющего напряжения, подаваемого между затвором и истоком. В отсутствие такого напряжения эти транзисторы закрыты (поэтому называются нормально закрытыми транзисторами). В случаях, когда такой транзистор используется в качестве нормально закрытого электронного ключа, управление им не потребует каких либо напряжений для постоянного смещения потенциала затвора. Однако, если организовать соответствующее смещение, транзистор будет работать в качестве линейного усилителя сигналов переменного напряжения.

В транзисторах второго типа проводящий канал создается в процессе их изготовления. Поэтому они являются нормально открытыми и могут усиливать переменный сигнал даже без смещения потенциала затвора. Если транзисторы с индуцированным каналом могут работать только в режиме обогащения канала свободными носителями тока необходимого вида, то транзисторы со встроенным каналом способны работать как в режиме обогащения, так и в режиме обеднения. По сравнению с исходным состоянием сопротивление канала этих транзисторов может быть увеличено или уменьшено с помощью внешнего управляющего сигнала.

В МДП-транзисторах (в отличие от транзисторов с управляющим р-п- переходом) металлический затвор изолирован от канала в объеме полупроводника слоем диэлектрика. Кроме того, у МДП-транзисторов имеется еще и четвертый вывод, называемый подложкой (П).

Принципы действия МДП-транзисторов с индуцированными каналами р -типа и п- типа качественно не отличаются. Здесь, как и в любом МДП-транзисторе, управляющее напряжение можно подавать как между затвором и подложкой, так и независимо на подложку и затвор.

При подаче на затвор отрицательного напряжения U ЗИ электроны приповерхностного слоя отталкиваются в глубь полупроводника, а дырки движутся к поверхности. Приповерх­ностный слой приобретает дырочную электропроводность. В нем появляется тонкий слой с инверсным типом проводимости, который выступает в качестве канала. Если между истоком и стоком приложено напряжение, то дырки, перемещаясь по каналу, создают ток стока. Путем изменения напряжения на затворе можно расширять или сужать канал и тем самым увеличивать или уменьшать сопротивление канала и, следовательно, ток стока.

Напряжение на затворе, при котором появляется проводящий канал, называют пороговым напряжением U ЗИ. пор. Так как канал возникает постепенно, по мере увеличения напряжения на затворе, то для исключения неоднозначности в его определении обычно задается определенное значение тока стока, при превышении которого считается, что потенциал затвора достиг порогового напряжения U ЗИ. пор .

По мере удаления от поверхности полупроводника концен­трация индуцированных дырок уменьшается. На расстоянии, приблизительно равном толщине канала, электропроводность становится собственной. Затем идет слой, обедненный основными носителями заряда (т.е. р-п -переход). Благодаря ему сток, исток и канал изолированы от подложки, поскольку р-п -переход смещен приложенным напряжением в обратном направлении. Очевидно, что его ширину и, следовательно, ширину канала можно изменять за счет подачи на подложку дополнительного напряжения относительно электродов стока и истока. Сле­довательно, током стока можно управлять не только пу­тем изменения напряжения на затворе, но и за счет из­менения напряжения на подложке. В последнем случае управ­ление МДП-транзистором аналогично управлению полевым транзистором с управляющим р-п -переходом.

Для образова­ния канала на затвор должно быть подано напряжение, большее U ЗИ. пор . При этом толщина образующегося инверсного слоя оказывается значительно меньше толщины обедненного слоя; если толщина обедненного слоя колеблется от сотен до тыся­ч нанометров, то толщина индуцированного канала составляет всего 1¸5 нанометров. Другими словами, дырки индуцированного канала «прижаты» к поверхности полупроводника, поэтому структура и свойства границы полупроводник - диэлектрик играют в МДП-транзисторах очень важную роль.

Рассмотрим семейство выходных вольтамперных характеристик (ВАХ) МДП-транзистора с индуцированным каналом. На рис. 13.1 видно, что каждый из графиков, соответствующий определенному значению напряжения U ЗИ, имеет три участка. На начальном участке ток стока быстро возрастает (крутая или омическая область). Затем идет слабая зависимость тока стока от напряжения U СИ (пологая область или область насыщения тока стока) и завершает график участок пробоя.


Можно заметить, что выходные ВАХ транзисторов рассматриваемого здесь вида похожи на выходные ВАХ полевых транзисторов с управляющим р-п- переходом. Как и транзисторы с управляющим р-п -переходом, МДП-транзисторы при малых напряжениях U СИ (в области I; рис. 13.1)ведут себя подобно линеаризованному управля­емому сопротивлению. При увеличении напряжения U СИ ши­рина канала уменьшается вследствие падения на нем напряже­ния и изменения результирующего электрического поля. Это особенно сильно проявляется в той части канала, которая находится вблизи стока.

Аналитичес­кие аппроксимации вольтамперных характеристик МДП-тран­зисторов не очень удобны и мало применяются в инженерной практике. Однако, при ориентировочных оценках тока стока в области насыщения можно использовать уравнение

, (13.1)

.

Управляющее действие подложки можно учесть путем введения коэффициента влияния по подложке

, (13.2)

называется крутизной характеристики на подложке. Она показывает, насколько следовало бы изменить напряжение на затворе, чтобы при изменении напряжения подложки U ПИ ток стока I C остался неизменным. Если одновременно действуют напряжения на затворе и подложке, то в выражения (13.1) и (13.2) вместо U ЗИ следует подставить

U ЗИ. эф = U ЗИ - hU ПИ. (13.3)

Инерционные свойства МДП-транзисторов зависят от ско­рости движения носителей заряда в канале, а также от межэлектродных емкостей между стоком и истоком (С СИ), между подложкой и истоком (С ПИ) и между подложкой и стоком (С ПС). Кроме того, быстродействие транзисторов зависит от значений сопротивлений, через которые эти емкости заряжаются и разряжаются. При этом ввиду малого времени пробега носителей заряда через канал, который обычно имеет длину 0,1¸5 мкм, влиянием последнего обычно пренебрегают.

При расчете схем, построенных на МДП-транзисторах с индуцированным каналом, используют эквивалентные схемы замещения этих транзисторов, в которых за инерционные свойства отвечают электрические емкости. На рис. 13.2 показана одна из таких схем. Необходимо сказать, что значения емкостей, входящих в эквивалентную схему (например, в такую, что представлена на рис. 13.2)не всегда известны. К тому же часть из них (в частности, С ПС и С ПИ) меняется в зависимости от напряжений на электродах. Поэтому на практике часто измеряют входную емкость транзистора для схемы с общим истоком (С 11И), его выходную (С 22И) и проходную (С 12И) емкости. Эти емкости характеризуют параметры полевого транзистора, который при заданном режиме измерения представлен эк­вивалентной схемой рис. 13.3. Эта схема не очень точно отражает особен­ности транзистора, но ее параметры известны или легко могут быть измерены. Обычно значения емкостей схемы с рис. 13.3 бывают следующими: входная емкость С 11И » 1¸5пФ, проход­ная емкость С 12И = 0,22 пФ, выходная емкость С 22И = 2¸6 пФ.




Кроме включения в эквивалентную схему транзистора межэлектродных емкостей, для учета инерционности используют частотную зависимость крутизны стоко-затворной характеристики. Операторное уравнение крутизны характеристики МДП-транзисторов имеет тот же вид, что и для полевых тран­зисторов с управляющим р-п -переходом:

, (13.4)

где w гр » w З = 1/t З, и t З » R СИ.откр ×С 3 . В типовом слу­чае при длине канала 5 мкм предельная частота, на ко­торой крутизна характеристики уменьшается в 0,7 раза, лежит в пределах нескольких сотен ме­гагерц.

Температурная зависимость порогового напряжения и на­пряжения отсечки обусловлена изменением положения уровня Ферми, изменением объемного заряда в обедненной области и влиянием температуры на величину заряда в диэлектрике. У МДП-транзисторов можно найти термостабильную рабочую точку, в которой ток стока мало зависит от температуры. У разных транзисторов значение тока стока в термостабильной точке находится в пределах I C = 0,05¸0,5 мА. Важным преимуществом МДП-транзисторов перед биполярными транзисторами является малое падение напряжения на них при коммутации малых сигналов. Так, если в биполярных тран­зисторах в режиме насыщения напряжение U КЭ принципиально не может быть меньше нескольких десятков - сотен милливольт, то у МДП-транзисторов при малых токах I C это падение напряже­ния (поскольку в этом случае транзистор работает в крутой области) мало и определяется током I С и сопротивлением канала R СИ. откр:

U СИ = I С ×R СИ.откр при | U СИ | < | U СИ. нас |. (13.5)

При уменьшении I C оно может быть сведено до значения, стремящегося к нулю.

МДП-транзисторы со встроенным каналом.Здесь, как и выше, мы рассмотрим транзистор с каналом только одного типа (р-типа), поскольку принципы действия транзисторов с каналами р- или п-типа одинаковы.

Такой транзистор изготавливается из пластинки полупроводникового кристалла с невысоким уровнем легирования донорами, имеющего слабо выраженную проводимость п -типа. На одной из поверхностей пластинки методом высокотемпературной диффузии устраивают слой с повышенным содержанием донорной примеси (проводимость п + ). На поверхность этого слоя напыляют металлический слой (электрод подложки). На противоположной поверхности полупроводниковой пластинки методом локальной диффузии акцепторной примеси изготавливают две отделенные друг от друга области полупроводника с р + -типом проводимости (области стока и истока), а затем, также методом диффузии, между ними изготавливают тонкий слой канала, имеющий слабо выраженную проводимость р -типа.

Таким образом, стоковая и истоковая области оказываются связанными гальванически (между ними нет р-п- перехода). Между областями с р -типом проводимости и основным объемом полупроводниковой пластинки (подложкой) образуется р -п -переход. На поверхности стоковой и истоковой областей напыляются металлические электроды, к которым припаиваются выводы стока и истока, соответственно. Поверхность полупроводниковой пластинки в месте нахождения канала покрывают слоем изолятора (диоксида кремния), а на этот слой напыляют металлический электрод (затвор). В зависимости от полярности напряжения между каналом и затвором происходит расширение или сужение встроенного канала и, следовательно, уменьшение или увеличение сопротивления канала.

Подчеркнем, что в транзисторах со встроенным каналом ток в цепи стока будет протекать и при нулевом напряжении на затворе. Для его прекращения необходимо к затвору приложить положитель­ное напряжение (при структуре с каналом р -типа), равное или большее напряжения отсечки U ЗИ.отс . При этом дырки из инверсного слоя будут вытеснены, практически полностью, в глубь полупроводника и канал исчезнет. При приложении отрицательного напряжения канал расширяется и ток увели­чивается. Следовательно, МДП-транзисторы со встроенными каналами работают как в режиме обеднения, так и в режиме обогащения.

При ориентировочных оценках тока стока транзистора со встроенным каналом в области насыщения можно использовать уравнение

, (13.6)

.

Графики семейства выходных ВАХ МДП-транзистора со встроенным каналом отличаются от соответствующих графиков МДП-транзисторов с индуцированным каналом лишь тем, что здесь напряжение U ЗИ может принимать как положительные значения, так и отрицательные. По форме те и другие графики идентичны. Здесь тоже имеются крутая (омическая) область I, область насыщения тока стока II и область пробоя канала транзистора в наиболее суженном месте, III.

Для расчетов усилительных схем на МДП-транзисторах со встроенным каналом рекомендуется схема замещения транзистора, показанная на рис. 6.17. В нее входят элементы: входная емкость транзистора в схеме с общим истоком (С 11И), его выходная емкость (С 22И), проходная емкость (С 12И), выходное дифференциальное сопротивление (R СИ. диф) и источник тока, определяющий усилительные свойства транзистора.



Обычно величины емкостей схемы замещения транзистора имеют следующие значения: С 11И » 1¸5пФ, С 12И = 0,22 пФ, С 22И = 2¸6 пФ. Величина сопротивления R СИ. диф находится в пределах от десятков до сотен кОм.

Рассмотрим некоторые параметры МДП-транзисторов и их ориентировочные значения. Среди них основными являются:

1. Крутизна характеристики

(при U СИ = const и U ПИ = const; S = 0,1¸500 мА/В);

1. Крутизна характеристики по подложке

(при U СИ = const и U ЗИ = const; S П = 0,1¸1 мА/В);

2. Начальный ток стока I C нач (ток стока при нулевом напряжении U ЗИ;у транзисторов с управляющим р-п -переходом I C нач = 0,2¸600 мА; для транзисторов с технологически встроенным каналом I C нач = 0,1¸100 мА; с индуцированным каналом I C . нач = 0,01¸0,5 мкА);

4. Пороговое напряжение U ЗИ. пор (U ЗИ. пор = 1¸6 В);

5. Сопротивление сток – исток в открытом состоянии R СИ.откр

(R СИ. откр = 2¸300 Ом);

6. Максимальный постоянный ток стока I C . макс (I C . макс = 10¸700 мА);

7. Остаточный ток стока I C . ост – ток стока при напряжении U ЗИ. отс (I C . ост = 0,001¸10 мА);

8. Максимальная частота усиления f р – частота, на которой коэффициент усиления по мощности К у Р равен единице (f р может принимать значения от десятков до сотен МГц).


Похожая информация.


А теперь давайте поговорим о полевых транзисторах. Что можно предположить уже по одному их названию? Во-первых, поскольку они транзисторы, то с их помощью можно как-то управлять выходным током. Во-вторых, у них предполагается наличие трех контактов. И в-третьих, в основе их работы лежит p-n переход. Что нам на это скажут официальные источники?
Полевыми транзисторами называют активные полупроводниковые приборы, обычно с тремя выводами, в которых выходным током управляют с помощью электрического поля. (electrono.ru)

Определение не только подтвердило наши предположения, но и продемонстрировало особенность полевых транзисторов - управление выходным током происходит посредством изменения приложенного электрического поля, т.е. напряжения. А вот у биполярных транзисторов , как мы помним, выходным током управляет входной ток базы.

Еще один факт о полевых транзисторах можно узнать, обратив внимание на их другое название - униполярные . Это значит, что в процессе протекания тока у них участвует только один вид носителей заряда (или электроны, или дырки).

Три контакта полевых транзисторов называются исток (источник носителей тока), затвор (управляющий электрод) и сток (электрод, куда стекают носители). Структура кажется простой и очень похожей на устройство биполярного транзистора. Но реализовать ее можно как минимум двумя способами. Поэтому различают полевые транзисторы с управляющим p-n переходом и с изолированным затвором .

Вообще, идея последних появилась еще в 20-х годах XX века, задолго до изобретения биполярных транзисторов. Но уровень технологии позволили реализовать ее лишь в 1960 году. В 50-х же был сначала теоретически описан, а затем получил воплощение полевой транзистор с управляющим p-n переходом. И, как и их биполярные «собратья», полевые транзисторы до сих пор играют в электронике огромную роль.

Перед тем, как перейти к рассказу о физике работы униполярных транзисторов, хочу напомнить ссылки, по которым можно освежить свои знания о p-n переходе: раз и два .

Полевой транзистор с управляющим p-n-переходом

Итак, как же устроен первый тип полевых транзисторов? В основе устройства лежит пластинка из полупроводника с проводимостью (например) p-типа. На противополжных концах она имеет электроды, подав напряжение на которые мы получим ток от истока к стоку. Сверху на этой пластинке есть область с противоположным типом проводимости, к которой подключен третий электрод - затвор. Естественно, что между затвором и p-областью под ним (каналом ) возникает p-n переход. А поскольку n-слой значительно у же канала, то большая часть обедненной подвижными носителями заряда области перехода будет приходиться на p-слой. Соответственно, если мы подадим на переход напряжение обратного смещения, то, закрываясь, он значительно увеличит сопротивление канала и уменьшит ток между истоком и стоком. Таким образом, происходит регулирование выходного тока транзистора с помощью напряжения (электрического поля) затвора.

Можно провести следующую аналогию: p-n переход - это плотина, перекрывающая поток носителей заряда от истока к стоку. Увеличивая или уменьшая на нем обратное напряжение, мы открываем/закрываем на ней шлюзы, регулируя «подачу воды» (выходной ток).

Итак, в рабочем режиме полевого транзистора с управляющим p-n переходом напряжение на затворе должно быть либо нулевым (канал открыт полностью), либо обратным.
Если величина обратного напряжения станет настолько большой, что запирающий слой закроет канал, то транзистор перейдет в режим отсечки .

Даже при нулевом напряжении на затворе, между затвором и стоком существует обратное напряжение, равное напряжению исток-сток. Вот почему p-n переход имеет такую неровную форму, расширяясь к области стока.

Само собой разумеется, что можно сделать транзистор с каналом n-типа и затвором p-типа. Сущность его работы при этом не изменится.

Условные графические изображения полевых транзисторов приведены на рисунке (а - с каналом p-типа, б - с каналом n-типа). Стрелка здесь указывает направление от p-слоя к n-слою.

Статические характеристики полевого транзистора с управляющим p-n-переходом
Поскольку в рабочем режиме ток затвора обычно невелик или вообще равен нулю, то графики входных характеристик полевых транзисторов мы рассматривать не будем. Перейдем сразу к выходным или стоковым. Кстати, статическими их называют потому, что на затвор подается постоянное напряжение. Т.е. нет необходимости учитывать частотные моменты, переходные процессы и т.п.


Выходной (стоковой ) называется зависимость тока стока от напряжения исток-сток при константном напряжении затвор-исток. На рисунке - график слева.

На графике можно четко выделить три зоны. Первая из них - зона резкого возрастания тока стока. Это так называемая «омическая» область . Канал «исток-сток» ведет себя как резистор, чье сопротивление управляется напряжением на затворе транзистора.

Вторая зона - область насыщения . Она имеет почти линейный вид. Здесь происходит перекрытие канала в области стока, которое увеличивается при дальнейшем росте напряжения исток-сток. Соответственно, растет и сопротивление канала, а стоковый ток меняется очень слабо (закон Ома, однако). Именно этот участок характеристики используют в усилительной технике, поскольку здесь наименьшие нелинейные искажения сигналов и оптимальные значения малосигнальных параметров, существенных для усиления. К таким параметрам относятся крутизна характеристики, внутреннее сопротивление и коэффициент усиления. Значения всех этих непонятных словосочетаний будут раскрыты ниже.

Третья зона графика - область пробоя , чье название говорит само за себя.

С правой стороны рисунка показан график еще одной важной зависимости - стоко-затворной характеристики . Она показывает то, как зависит ток стока от напряжения затвор-исток при постоянном напряжении между истоком и стоком. И именно ее крутизна является одним из основных параметров полевого транзистора.

Полевой транзистор с изолированным затвором

Такие транзисторы также часто называют МДП (металл-диэлектрик-полупроводник)- или МОП (металл-оксид-полупроводник)-транзисторами (англ. metall-oxide-semiconductor field effect transistor, MOSFET). У таких устройств затвор отделен от канала тонким слоем диэлектрика. Физической основой их работы является эффект изменения проводимости приповерхностного слоя полупроводника на границе с диэлектриком под воздействием поперечного электрического поля.
Устройство транзисторов такого вида следующее. Есть подложка из полупроводника с p-проводимостью, в которой сделаны две сильно легированные области с n-проводимостью (исток и сток). Между ними пролегает узкая приповерхностнаяя перемычка, проводимость которой также n-типа. Над ней на поверхности пластины имеется тонкий слой диэлектрика (чаще всего из диоксида кремния - отсюда, кстати, аббревиатура МОП). А уже на этом слое и расположен затвор - тонкая металлическая пленка. Сам кристалл обычно соединен с истоком, хотя бывает, что его подключают и отдельно.

Если при нулевом напряжении на затворе подать напряжение исток-сток, то по каналу между ними потечет ток. Почему не через кристалл? Потому что один из p-n переходов будет закрыт.

А теперь подадим на затвор отрицательное относительно истока напряжение. Возникшее поперечное электрическое поле «вытолкнет» электроны из канала в подложку. Соответственно, возрастет сопротивление канала и уменьшится текущий через него ток. Такой режим, при котором с возрастанием напряжения на затворе выходной ток падает, называют режимом обеднения .
Если же мы подадим на затвор напряжение, которое будет способствовать возникновению «помогающего» электронам поля «приходить» в канал из подложки, то транзистор будет работать в режиме обогащения . При этом сопротивление канала будет падать, а ток через него расти.

Рассмотренная выше конструкция транзистора с изолированным затвором похожа на конструкцию с управляющим p-n переходом тем, что даже при нулевом токе на затворе при ненулевом напряжении исток-сток между ними существует так называемый начальный ток стока . В обоих случаях это происходит из-за того, что канал для этого тока встроен в конструкцию транзистора. Т.е., строго говоря, только что мы рассматривали такой подтип МДП-транзисторов, как транзисторы с встроенным каналом .

Однако, есть еще одна разновидность полевых транзисторов с изолированным затвором - транзистор с индуцированным (инверсным) каналом . Из названия уже понятно его отличие от предыдущего - у него канал между сильнолегированными областями стока и истока появляется только при подаче на затвор напряжения определенной полярности.

Итак, мы подаем напряжение только на исток и сток. Ток между ними течь не будет, поскольку один из p-n переходов между ними и подложкой закрыт.
Подадим на затвор (прямое относительно истока) напряжение. Возникшее электрическое поле «потянет» электроны из сильнолегированных областей в подложку в направлении затвора. И по достижении напряжением на затворе определенного значения в приповерхностной зоне произойдет так называемая инверсия типа проводимости. Т.е. концентрация электронов превысит концентрацию дырок, и между стоком и истоком возникнет тонкий канал n-типа. Транзистор начнет проводить ток, тем сильнее, чем выше напряжение на затворе.
Из такой его конструкции понятно, что работать транзистор с индуцированным каналом может только находясь в режиме обогащения. Поэтому они часто встречаются в устройствах переключения.

Условные обозначения транзисторов с изолированным затвором следующие:


Здесь
а − со встроенным каналом n- типа;
б − со встроенным каналом р- типа;
в − с выводом от подложки;
г − с индуцированным каналом n- типа;
д − с индуцированным каналом р- типа;
е − с выводом от подложки.

Статические характеристики МДП-транзисторов
Семейство стоковых и стоко-затворная характеристики транзистора с встроенным каналом предсталены на следующем рисунке:


Те же характеристики для транзистора с идуцированным каналом:
Экзотические МДП-структуры
Чтобы не запутывать изложение, хочу просто посоветовать ссылки, по которым о них можно почитать. В первую очередь, это всеми любимая википедия , раздел «МДП-структуры специального назначения». А здесь теория и формулы: учебное пособие по твердотельной электронике, глава 6 , подглавы 6.12-6.15. Почитайте, это интересно!

Общие параметры полевых транзисторов

  1. Максимальный ток стока при фиксированном напряжении затвор-исток.
  2. Максимальное напряжение сток-исток , после которого уже наступает пробой.
  3. Внутреннее (выходное) сопротивление . Оно представляет собой сопротивление канала для переменного тока (напряжение затвор-исток - константа).
  4. Крутизна стоко-затворной характеристики . Чем она больше, тем «острее» реакция транзистора на изменение напряжения на затворе.
  5. Входное сопротивление . Оно определяется сопротивлением обратно смещенного p-n перехода и обычно достигает единиц и десятков МОм (что выгодно отличает полевые транзисторы от биполярных «родственников»). А среди самих полевых транзисторов пальма первенства принадлежит устройствам с изолированным затвором.
  6. Коэффициент усиления - отношение изменения напряжения исток-сток к изменению напряжения затвор-исток при постоянном токе стока.

Схемы включения


Как и биполярный, полевой транзистор можно рассматривать как четырехполюсник, у которого два из четырех контактов совпадают. Таким образом, можно выделить три вида схем включения: с общим истоком, с общим затвором и с общим стоком. По характеристикам они очень похожи на схемы с общим эмиттером, общей базой и общим коллектором для биполярных транзисторов.
Чаще всего применяется схема с общим истоком (а ), как дающая большее усиление по току и мощности.
Схема с общим затвором (б ) усиления тока почти не дает и имеет маленькое входное сопротивление. Из-за этого такая схема включения имеет ограниченное практическое применение.
Схему с общим стоком (в ) также называют истоковым повторителем . Ее коэффициент усиления по напряжению близок к единице, входное сопротивление велико, а выходное мало.

Отличия полевых транзисторов от биполярных. Области применения

Как уже было сказано выше, первое и главное отличие этих двух видов транзисторов в том, что вторые управляются с помощью изменения тока, а первые - напряжения. И из этого следуют прочие преимущества полевых транзисторов по сравнению с биполярными:
  • высокое входное сопротивление по постоянному току и на высокой частоте, отсюда и малые потери на управление;
  • высокое быстродействие (благодаря отсутствию накопления и рассасывания неосновных носителей);
  • поскольку усилительные свойства полевых транзисторов обусловлены переносом основных носителей заряда, их верхняя граница эффективного усиления выше, чем у биполярных;
  • высокая температурная стабильность;
  • малый уровень шумов, так как в полевых транзисторах не используется явление инжекции неосновных носителей заряда, которое и делает биполярные транзисторы «шумными»;
  • малое потребление мощности.
Однако, привсем при этом у полевых транзисторов есть и недостаток - они «боятся» статического электричества, поэтому при работе с ними предъявляют особо жесткие требования по защите от этой напасти.

Где применяются полевые транзисторы? Да практически везде. Цифровые и аналоговые интегральные схемы, следящие и логические устройства, энергосберегающие схемы, флеш-память… Да что там, даже кварцевые часы и пульт управления телевизором работают на полевых транзисторах. Они повсюду, %хабраюзер %. Но теперь ты знаешь, как они работают!

Полупроводниковых элементов постоянно растет. Каждое новое изобретение в этой области, по сути дела, меняет все представление об электронных системах. Меняются схемотехнические возможности в проектировании, появляются новые устройства на их основе. С момента изобретения (1948 г), прошло уже немало времени. Были изобретены структуры "p-n-p" и "n-p-n", Со временем появился и МДП-транзистор, работающий по принципу изменения электрической проводимости приповерхностного полупроводникового слоя под действием электрического поля. Отсюда и еще одно название этого элемента - полевой.

Сама аббревиатура МДП (металл-диэлектрик-полупроводник) характеризует внутреннее строение этого прибора. И действительно, затвор у него изолирован от стока и истока тонким непроводящим слоем. Современный МДП-транзистор имеет длину затвора, равную 0,6 мкм. Через него может проходить только электромагнитное поле - вот оно и влияет на электрическое состояние полупроводника.

Давайте рассмотрим, как работает и выясним, в чем же его основное отличие от биполярного “собрата”. При появлении необходимого потенциала на его затворе появляется электромагнитное поле. Оно влияет на сопротивление перехода сток-исток перехода. Вот некоторые преимущества, которые дает использование этого прибора.

При проектировании и работе с этими элементами, необходимо учитывать, что МДП-транзисторы очень чувствительны к перенапряжению в схеме и То есть прибор может выйти из строя при прикосновении к управляющим выводам. При монтаже или демонтаже используйте специальное заземление.

Перспективы в использовании этого прибора очень хорошие. Благодаря своим уникальным свойствам, он нашел широкое применение в различной электронной аппаратуре. Инновационным направлением в современной электронике является использование силовых IGBT-модулей для работы в различных цепях, в том числе, и индукционных.

Технология их производства постоянно совершенствуется. Ведутся разработки по масштабированию (уменьшению) длины затвора. Это позволит улучшить и так уже неплохие эксплуатационные параметры прибора.

ТЕМА 5. ПОЛЕВЫЕ ТРАНЗИСТОРЫ

Полевой транзистор – это электропреобразовательный прибор, в котором ток, протекающий через канал, управляется электрическим полем, возникающим при приложении напряжения между затвором и истоком, и который предназначен для усиления мощности электромагнитных колебаний.

К классу полевых относят транзисторы, принцип действия которых основан на использовании носителей заряда только одного знака (электронов или дырок). Управление током в полевых транзисторах осуществляется изменением проводимости канала, через который протекает ток транзистора под воздействием электрического поля. Вследствие этого транзисторы называют полевыми.

По способу создания канала различают полевые транзисторы с затвором в виде управляющего р-n- перехода и с изолированным затвором (МДП - или МОП - транзисторы): встроенным каналом и индуцированным каналом.

В зависимости от проводимости канала полевые транзисторы делятся на: полевые транзисторы с каналом р- типа и n- типа. Канал р- типа обладает дырочной проводимостью, а n- типа – электронной.

5.1 Полевые транзисторы с управляющим р- n- переходом

5.1.1 Устройство и принцип действия

Полевой транзистор с управляющим р-n- переходом – это полевой транзистор, затвор которого отделен в электрическом отношении от канала р-n-переходом, смещенным в обратном направлении.

Рисунок 5.1 – Устройство полевого транзистора с управляющим р-n-переходом (каналом n- типа)

Рисунок 5.2 – Условное обозначение полевого транзистора с р-n-переходом и каналом n- типа (а), каналом р- типа (б)

Каналом полевого транзистора называют область в полупроводнике, в которой ток основных носителей заряда регулируется изменением ее поперечного сечения.

Электрод (вывод), через который в канал входят основные носители заряда, называют истоком. Электрод, через который из канала уходят основные носители заряда, называют стоком. Электрод, служащий для регулирования поперечного сечения канала за счет управляющего напряжения, называют затвором.

Как правило, выпускаются кремниевые полевые транзисторы. Кремний применяется потому, что ток затвора, т.е. обратный ток р-n- перехода, получается во много раз меньше, чем у германия.

Условные обозначения полевых транзисторов с каналом n- и р- типов приведены на рис. 5.2.

Полярность внешних напряжений, подводимых к транзистору, показана на рис. 5.1. Управляющее (входное) напряжение подается между затвором и истоком. Напряжение Uзи является обратным для обоих р-n- переходов. Ширина р-n- переходов, а, следовательно, эффективная площадь поперечного сечения канала, его сопротивление и ток в канале зависят от этого напряжения. С его ростом расширяются р-n- переходы, уменьшается площадь сечения токопроводящего канала, увеличивается его сопротивление, а, следовательно, уменьшается ток в канале. Следовательно, если между истоком и стоком включить источник напряжения Uси, то силой тока стока Iс, протекающего через канал, можно управлять путем изменения сопротивления (сечения) канала с помощью напряжения, подаваемого на затвор. На этом принципе и основана работа полевого транзистора с управляющим р-n- переходом.

При напряжении Uзи = 0 сечение канала наибольшее, его сопротивление наименьшее и ток Iс получается наибольшим.

Ток стока Iс нач при Uзи = 0 называют начальным током стока.

Напряжение Uзи, при котором канал полностью перекрывается, а ток стока Iс становится весьма малым (десятые доли микроампер), называют напряжением отсечки Uзиотс.

5.1.2 Статические характеристики полевого транзистора с управляющим р- n- переходом

Рассмотрим вольт - амперные характеристики полевых транзисторов с р-n- переходом. Для этих транзисторов представляют интерес два вида вольт - амперных характеристик: стоковые и стоко - затворные.

Стоковые (выходные) характеристики полевого транзистора с р-n- переходом и каналом n- типа показаны на рис. 5.3, а. Они отражают зависимость тока стока от напряжения Uси при фиксированном напряжении Uзи: Ic= f(Uси) при Uзи = const.


а) б)

Рисунок 5.3 – Вольт-амперные характеристики полевого транзистора с р-п- переходом и каналом п- типа: а – стоковые (выходные); б – стоко - затворная

Особенностью полевого транзистора является то, что на проводимость канала оказывает влияние как управляющее напряжение Uзи, так и напряжение Uси. При Uси = 0 выходной ток Iс = 0. При Uси > 0 (Uзи = 0) через канал протекает ток Ic, в результате чего создается падение напряжения, возрастающее в направлении стока. Суммарное падение напряжения участка исток-сток равно Uси. Повышение напряжения Uси вызывает увеличение падения напряжения в канале и уменьшение его сечения, а следовательно, уменьшение проводимости канала. При некотором напряжении Uси происходит сужение канала, при котором границы обоих р-n- переходов смыкаются и сопротивление канала становится высоким. Такое напряжение Uси называют напряжением перекрытия или напряжением насыщения Uсинас. При подаче на затвор обратного напряжения Uзи происходит дополнительное сужение канала, и его перекрытие наступает при меньшем значении напряжения Uсинас. В рабочем режиме используются пологие (линейные) участки выходных характеристик.

Стоко - затворная характеристика полевого транзистора показывает зависимость тока Iс от напряжения Uзи при фиксированном напряжении Uси: Ic= f(Uси) при Uси = const (рис. 5.3, б).

5.1.3 Основные параметры

· максимальный ток стока Iсmax (при Uзи = 0);

· максимальное напряжение сток-исток Uсиmax;

· напряжение отсечки Uзиотс;

· внутреннее (выходное) сопротивление ri − представляет собой сопротивление транзистора между стоком и истоком (сопротивление канала) для переменного тока:

при Uзи = const;

· крутизна стоко-затворной характеристики:

при Uси = const,

отображает влияние напряжение затвора на выходной ток транзистора;

· входное сопротивление

при Uси = const транзистора определяется сопротивлением р-n- переходов, смещенных в обратном направлении. Входное сопротивление полевых транзисторов с р-n- переходом довольно велико (достигает единиц и десятков мегаом), что выгодно отличает их от биполярных транзисторов.

5.2 Полевые транзисторы с изолированным затвором

5.2.1 Устройство и принцип действия

Полевой транзистор с изолированным затвором (МДП - транзистор) – это полевой транзистор, затвор которого отделен в электрическом отношении от канала слоем диэлектрика.

МДП - транзисторы (структура: металл-диэлектрик-полупроводник) выполняют из кремния. В качестве диэлектрика используют окисел кремния SiO2. отсюда другое название этих транзисторов – МОП - транзисторы (структура: металл-окисел-полупроводник). Наличие диэлектрика обеспечивает высокое входное сопротивление рассматриваемых транзисторов (1012 … 1014Ом).

Принцип действия МДП - транзисторов основан на эффекте изменения проводимости приповерхностного слоя полупроводника на границе с диэлектриком под воздействием поперечного электрического поля. Приповерхностный слой полупроводника является токопроводящим каналом этих транзисторов. МДП - транзисторы выполняют двух типов – со встроенным и с индуцированным каналом.

Рассмотрим особенности МДП - транзисторов со встроенным каналом. Конструкция такого транзистора с каналом n-типа показана на рис. 5.4, а. В исходной пластинке кремния р- типа с относительно высоким удельным сопротивлением, которую называют подложкой, с помощью диффузионной технологии созданы две сильнолегированные области с противоположным типом электропроводности – n. На эти области нанесены металлические электроды – исток и сток. Между истоком и стоком имеется тонкий приповерхностный канал с электропроводностью n- типа. Поверхность кристалла полупроводника между истоком и стоком покрыта тонким слоем (порядка 0,1 мкм) диэлектрика. На слой диэлектрика нанесен металлический электрод – затвор. Наличие слоя диэлектрика позволяет в таком полевом транзисторе подавать на затвор управляющее напряжение обеих полярностей.


Рисунок 5.4 – Конструкция МДП - транзистора со встроенным каналом n- типа (а); семейство его стоковых характеристик (б); стоко-затворная характеристика (в)

При подаче на затвор положительного напряжения, электрическим полем, которое при этом создается, дырки из канала будут выталкиваться в подложку, а электроны вытягиваться из подложки в канал. Канал обогащается основными носителями заряда – электронами, его проводимость увеличивается и ток стока возрастает. Этот режим называют режимом обогащения.

При подаче на затвор напряжения, отрицательного относительно истока, в канале создается электрическое поле, под влиянием которого электроны выталкиваются из канала в подложку, а дырки втягиваются из подложки в канал. Канал обедняется основными носителями заряда, его проводимость уменьшается и ток стока уменьшается. Такой режим транзистора называют режимом обеднения.

В таких транзисторах при Uзи = 0, если приложить напряжение между стоком и истоком (Uси > 0), протекает ток стока Iснач, называемый начальным и, представляющий собой поток электронов.

Конструкция МДП - транзистора с индуцированным каналом n- типа показана на рис. 5.5, а