Как называется аппарат который сканирует отпечатки пальцев. Что такое сканер отпечатка пальца в смартфоне

Так что же такое сканер отпечатков пальцев?

Это тип биометрической технологии безопасности, которая использует комбинацию аппаратных и программных методов дли распознавания отпечатка пальца пользователя. Он идентифицирует и проверяет подлинность отпечатков пальцев человека, чтобы разрешить или запретить доступ к смартфону, приложению и другим местам, которые нуждаются в защите от нежелательного вмешательства. Есть много других способов защиты персональной информации, такие как: биометрия, сканирование радужной оболочки глаза, сканирование сетчатки глаза, сканирование черт лица и так далее вплоть до спец анализа крови или походки. Кстати, анализ походки был продемонстрирован в фильме серии Миссия Невыполнима с Томом Крузом. В некоторых смартфонах даже используется сканер радужной оболочки глаза, но реализация этой фичи, естественно, далека от идеала. Почему именно сканер отпечатков? Все просто: платы для сканирования отпечатков довольно дешевы и просты как в изготовлении так и в использовании. Прикоснулся к сканеру и твой Redmi Note 3 мгновенно разблокирован и готов к работе.

Как существуют разные виды технологий биометрической безопасности, так и типы сканеров отпечатков пальцев имеют разные технологии и способы реализации. Всего существует три вида сканеров отпечатков:

  1. Оптические сканеры;
  2. Емкостные сканеры;
  3. Ультразвуковые сканеры.

Оптические сканеры

Оптические сканеры отпечатков пальцев являются самым старым методом захвата и сравнения отпечатков пальцев. Как нетрудно догадаться из названия, этот метод основан на захвате оптического изображения отпечатка. По сути, это фотография отпечатка пальца, которая после захвата обрабатывается с использованием специальных алгоритмов для обнаружения уникальных узоров на поверхности, таких как гребней и уникальных завиток, анализируя самые светлые и темные участки изображения.

Так же как и камера в смартфоне, эти датчики имеют конечное разрешение и чем выше это разрешение, тем более мелкие детали узора датчик сможет различить на вашем пальце, тем выше безопасность. Тем не менее сенсоры этих датчиков имеют намного больший контраст, чем обычный фотоаппарат. Как правило, они имеют очень большое количество диодов на дюйм, чтобы захватывать изображение на близком расстоянии. Но когда прикладываешь палец к сканеру, то его камера ничего не видит, ведь темно, возразите вы. Верно. Поэтому оптические сканеры также имеют целые массивы светодиодов в качестве вспышки, чтобы осветить область сканирования. Очевидно, такая конструкция слишком громоздкая для телефона, где тонкость корпуса играет важную роль.

Основным недостатком оптических сканеров является то, что их довольно легко обмануть. Оптические сканеры захватывают только 2D изображение. Многие видели как с помощью незамысловатых манипуляций с тем же клеем ПВА или просто с качественной фотографией взламывается сканер и доступ к вашим важным документам или котикам получен. Поэтому этот тип обеспечения безопасности не подходит для смартфонов.

Так же как и сейчас вы можете найти смартфоны с резистивным экраном, вам могут встретиться и оптические сканеры отпечатков. Их еще используют в многих сферах, кроме тех, где нужна реальная безопасность. В последнее время с развитием технологий и увеличением спроса на более серьезную безопасность, смартфоны единогласно приняли и используют емкостные сканеры. Речь о них пойдет ниже.

Емкостные сканеры

Это наиболее часто встречающийся тип сканера отпечатков пальцев на сегодняшний день. Как видно из названия, конденсатор является основным модулем для сканирования в емкостном сканере. Вместо того, чтобы создавать традиционное изображение отпечатка пальца, емкостные сканеры используют массивы крошечных цепей конденсатора для сбора данных о отпечатках. Конденсаторы хранят электрический заряд и, приложив палец к поверхности сканера, накапливаемый в конденсаторе будет слегка изменен в тех местах, где гребень на узоре прикасается к пластине, и останется относительно неизменным, где наоборот впадины на узоре. Схема интегратора операционного усилителя используется для отслеживания этих изменений, которые затем могут быть записаны с помощью преобразователя в аналого-цифровой.

После того, как данные о отпечатке были захвачены, данные преобразуются в цифровые и уже в них ведется поиск отличительных и уникальных атрибутов отпечатка пальца, которые в свою очередь могут быть сохранены для сравнения на более позднем этапе. Главный плюс этой технологии в том, что она намного лучше оптических сканеров. Результаты сканирования не могут быть воспроизведены с изображением и его невероятно сложно обмануть с помощью протезирования, то есть слепка отпечатка. Как написано выше, это потому, что при распознавании отпечатка записываются несколько иные данные, а именно, изменения заряда на конденсаторе. Единственная реальная угроза безопасности исходит от любого аппаратного или программного вмешательства.

В емкостных сканерах отпечатков используют достаточно большие массивы этих конденсаторов, как правило сотник, если не тысячи в одном сканере. Это позволяет с высокой степенью детализировать изображение гребней и впадин отпечатка пальца. Так же как и в оптических сканерах большее количество конденсаторов обеспечивает более высокое разрешение сканера, повышая точность распознавания и, соответственно, уровень безопасности, вплоть до распознавания мельчайших точек.

Из-за большего количества компонентов в цепи распознавания отпечатка емкостные сканеры обычно немного дороже оптических. В ранних итерациях емкостных сканеров многие производители пытались уменьшить стоимость, сократив количество конденсаторов, необходимых для распознавания отпечатка. Такие решения были почти всегда не очень успешными и многие пользователи жаловались на качество распознавания, ведь приходилось несколько раз прикладывать палец, чтобы отсканировать отпечаток. К счастью, в наши дни эта технология уже доведена до ума и даже привередливый пользователь останется доволен. Стоит заметить, что если палец грязный или слишком влажный/жирный, то и емкостный сканер иногда не сможет распознать отпечаток. Впрочем, все же моют руки?:)

Ультразвуковые сканеры

Ультразвуковые сканеры отпечатков пальцев на данный момент являются новейшими технологиями распознавания отпечатков. Впервые данный тип сканера был использован в смартфоне Le Max Pro. В этом телефоне используются технологии американской компании Qualcomm с ее Sense ID.

Для распознавания отпечатка ультразвуковой сканер использует ультразвуковой передатчик и приемник. Ультразвуковой импульс передается непосредственно на палец, который помещен перед сканером. Часть этого импульса поглощается, а часть возвращается к приемнику и далее распознается в зависимости от гребней, впадин и других деталей отпечатка, которые являются уникальными для каждого пальца. В ультразвуковых сканерах датчик, который обнаруживает механическое напряжение, используется для расчета интенсивности возвращающегося ультразвукового импульса в различных точках на сканере. Сканирование в течение более продолжительного времени позволяет распознать дополнительные данные по глубине отпечатка, которые будут захвачены, и дадут в результате очень подробные 3D изображения отсканированного отпечатка пальца. Использование 3D технологии в этом методе сканирования делает его наиболее безопасной альтернативой емкостным сканерам. Единственный минус данной технологии в том, что на данный момент она еще не отработана и слишком дорогая. Первые смартфоны с такими сканерами являются первопроходцами в этой сфере. По этой же причине Xiaomi не стала использовать ультразвуковой сканер в своем флагмане Mi5.

Алгоритмы обработки отпечатков

Хоть, большинство сканеров отпечатков и основаны на очень схожих аппаратных принципах, дополнительные компоненты и программное обеспечение может играть важную роль в распознавании отпечатков. Различные производители используют несколько различных алгоритмов, которые будут наиболее “удобны” для конкретной модели процессора и операционной системы. Соответственно, у различных производителей определение ключевых характеристик отпечатков пальцев может различаться по скорости и точности.

Как правило, эти алгоритмы ищут где гребни и впадины заканчиваются, пересекаются и разделяются на две части. В совокупности особенности узора отпечатка называются “мелочами”. Если отсканированный отпечаток соответствует нескольким “мелочам”, то он будет рассмотрен как совпадение. Для чего это? Вместо того, чтобы сравнивать целые отпечатки каждый раз, сравнивание по “мелочам” уменьшает количество затрачиваемой вычислительной мощности, необходимой для обработки и идентификации каждого отпечатка пальца. Также данный способ помогает избежать ошибок при сканировании отпечатка и, главное, появляется возможность прикладывать палец не полностью. Ведь вы никогда не прикладываете палец точь в точь? Конечно, нет.

Эта информация должна храниться в безопасном месте на вашем устройстве и в достаточном удалении от кода, который потенциально может поставить под угрозу надежность сканера. Вместо того, чтобы хранить пользовательские данные в интернете, процессор надежно хранит информацию об отпечатке на физическом чипе в TEE (доверенная среда для выполнения задач). Эта безопасная зона используется также и для других криптографических процессов и напрямую обращается к защитным аппаратным платформам, таким как тот же сканер отпечатков, чтобы предотвратить любую программную слежку и любое вторжение. Эти алгоритмы у разных производителей могут отличаться или вовсе быть организованны по разному, например у Qualcomm это архитектура Secure MCM, а у Apple - Secure Enclave, но все они основаны на одном и том же принципе хранения этой информации в отдельной части процессора.

В современных смартфонах, включая бюджетные китайские модели, появились сканеры отпечатков пальцев. С их помощью разблокировать мобильное устройство можно в одно касание. Как настроить и эффективно использовать этот датчик в вашем смартфоне, рассказываем в этой статье.

Как включить сканер отпечатков на смартфоне

Изначально такая функция разблокировки в Андроид-смартфонах выключена. Чтобы включить её, выбираем Настройки.

Там находим Экран блокировки и отпечаток пальца.

Затем открываем Управление отпечатками пальцев.


Злоумышленник не сможет включить эту функцию без вашего ведома, даже если в его руки попадёт разблокированный смартфон. Прежде, чем снять информацию с датчика, система запросит пин-код или пароль разблокировки телефона.

Теперь выбираем Добавить отпечаток пальца.


Вот такой рисунок с зелёной галочкой на экране говорит, что всё прошло успешно.


Телефон может попросить вас коснуться датчика несколько раз, чтобы обеспечить надёжный снимок.

С этого момента вы сможете разблокировать телефон касанием поверхности сканера пальцем.

Если не сработал сканер отпечатков на смартфоне

По отзывам пользователей, проявляется эта неисправность крайне редко и чаще всего имеет определённую устранимую причину. Попробуйте следующие подсказки.

  • Сканер плохо работает с грязными и влажными руками. Устраните влагу и загрязнения с поверхности датчика и пальца.
  • Выключите (заблокируйте) телефон коротким нажатием на кнопку, а через 5-7 секунд включите снова.
  • Разблокируйте телефон обычным паролем и проверьте по приведённому выше алгоритму настройку работы с датчиком из Экрана блокировки. Возможно, потребуется перезаписать отпечатки заново.
  • Бывают редкие случаи, когда помочь может только возврат устройства к заводским настройкам.
Чтобы повысить надёжность срабатывания датчика, запишите в память устройства снимки пяти или всех десяти пальцев. Если не сработает один, предъявите телефону второй.

Как разблокировать приложение отпечатком пальца

Кроме самого телефона, касанием руки вы можете заблокировать от несанкционированного доступа важные приложения. Для этого нужно включить Защита приложений в настройках датчика.


Затем нужно включить стандартный блокировщик приложений Android с помощью Настроек. Вот так этот режим включается в китайских телефонах Xiaomi. Он называется Замок приложений.


Для каждой программы можно определить необходимость применения пароля. Автоматически система относит к таким конфиденциальным данным следующие: Контакты и телефон, Галерею, Сообщения и Почту.


Теперь программы с галочкой будут открываться только при предъявлении пальца или пароля (альтернативный вариант разблокировки).


Кстати, для тех, у кого на смартфоне такого датчика нет, Замок приложений тоже поможет. Этот режим поддерживает графический ключ – достаточно надёжный и простой в запоминании способ авторизации.

Купить смартфоны китайских брендов со сканером отпечатков пальцев в Новосибирске можно в интернет-магазине SibDroid. По любым вопросам о правилах его настройки и использования обращайтесь к нашим профессиональным менеджерам

Сканер отпечатков пальцев стал очень продвинутой фишкой большинства смартфонов. Некоторым пользователям он не нужен, другие же хотят, чтобы такой сканер был встроен в их телефон, так как это стало очень модно.

Но как работает такой сканер? Есть ли у него альтернативы? Откуда он вообще взялся? На этот и другие вопросы мы попытаемся дать вам ответ.

Предыстория

Как многие знают, Apple была первой компанией, которая вставила сканер отпечатков в свой IPhone. На самом деле нет. Первым телефоном, который получил такое дополнение был представлен ещё в 2004 году, который назывался Pantech GI100.

И тут компания Apple представляет новый iPhone 5S, у которого в кнопку “Home” встроен сканер отпечатков пальцев. И тут мир цифровых технологий взорвался. Apple подтолкнула многих производителей вставлять такую функцию в свои смартфоны, и сейчас сканер можно встретить в большинстве , не говоря о среднем ценовом сегменте и флагманах.

Как работают сканеры в современных смартфонах?

Существует несколько типов сканеров:

  • Оптические
  • Полупроводниковые
  • Радиочастотные
  • Ультразвуковые
  • Термосканеры
  • Сканер использующий метод давления

О всех типах рассказывать мы не станем, а расскажем только о тех, которые используются в смартфонах.

Самые простые и дешёвые в реализации – оптические сканеры. Если описать принцип его работы в двух словах, то он просто фотографирует узоры вашего пальца. В таких сканерах в основном стоят КМОП и ПЗС матрицы, которые и фиксируют изображения. Лучшие образцы таких сканеров обладают разрешением 1200 dpi. Но даже оно не спасает от частых ошибок.

На работу оптических сканеров сильно влияют такие факторы, как загрязнённость пальца или поверхность сканера. Не малую роль играют и повреждения кожи. Кроме этого, оптические сканеры легче всего обмануть.

На смену оптическим сканерам потихоньку приходят ультразвуковые. Они сканируют поверхность пальца звуковыми волнами, и могут похвастаться очень большой скоростью и точностью распознавания. Таким сканерам не страшны ни грязь, ни влага, ни повреждённая кожа. И что не мало важно – их практически невозможно взломать. Благодаря хорошей проницательной способности звуковых волн, сканер можно разместить даже под поверхностью экрана или под крышкой смартфона.

Но это всё пока в теории. На данный момент такие сканеры ещё сырые и особо не обкатаны производителем. На конец 2016 года ультразвуковыми сканерами было оснащено всего лишь 3 смартфона, один из которых Xiaomi Mi 5S версии 4/128.

Как взломать сканер отпечатков пальца?

Раз мы начали говорить про безопасность, давайте поговорим о том, как же можно взломать сканер отпечатков.

Первый, и самый банальный способ – это сделать фотографию и напечатать её на струйном принтере, а затем приложить к сканеру. Правда этот способ работает только с первым поколением оптических сканеров. Для обхода более новых потребуется дополнительный этап – создание слепка из силикона. Данный метод позволяет обойти 99% сканеров. Перед ним не устоял даже хвалебный IPhone.

Хакеры из немецкой ассоциации House Computer Club уже давно описали процесс взлома посредством создания силиконового слепка. Но стоит отметить, что таким способом пока не удастся обмануть ультразвуковой сканер, так как он во время сканирования ещё и считывает пульс владельца и может отличить живой палец от силиконовой имитации.

Ну и в конце концов, можно просто взять ваш палец и приложить его к сканеру, пока вы спите. От такого типа взлома не застрахованы даже ультразвуковые датчики.

Где стоят самые быстрые и точные сканеры?

Производители часто хвастаются на своих презентациях тем, что их устройства распознают отпечаток за считанные доли секунды и что их устройство быстрее всех на рынке. Но зачастую это бывает не всегда так.

Есть три действительно хороших смартфона, в котором сканеры отпечатков показали себя достойно.

Zuk Z1. В своё время, работа его сканера поражала своей молниеносностью. Порой он даже уделывал второе поколение Touch ID от Apple, чем повергал в шок владельцев айфонов 6S и 6S+.

Ещё очень крутой сканер стоит в Xiaomi Mi5. Он срабатывает ещё быстрее, чем в предыдущем смартфоне, да и процент удачных распознаваний гораздо выше.

Но самый быстрый и самый чёткий сканер пока у . Устройство считывает палец и разблокирует его просто мгновенно. Срабатывает сканер просто невероятно – 10 из 10. Да и реагирует он на прикосновения прямо из коробки отлично, без всяких .

Есть ли замена сканерам отпечатков пальцев?

Хорошей альтернативой сканерам отпечатков пальцев является иридосканер. Иными словами – сканер радужки глаза. Хорош он тем, что вам не обязательно иметь непосредственный контакт с гаджетом.

Допустим ваши руки чем-то заняты, или чем-то сильно испачканы, да так сильно, что даже ультразвуковой сканер не может распознать ваши отпечатки. В таком случае, как нельзя лучше, подойдёт иридосканер. Он просто считает узор с вашей радужной оболочки глаза на расстоянии и всё.

Смартфоны с таким биометрическим датчиком начали появляться на азиатском рынке ещё в 2015 году. Японцы и китайцы в лице ZTE, Viewsonic и Vivo уже опробовали эту технологию на своих внутренних рынках. На мировой арене, технология должна была дебютировать в Samsung Galaxy Note 7, но все мы прекрасно знаем, где он сейчас находится. Хотя сама по себе реализация иридосканера в Note 7 была близка к идеалу. Благодаря инфракрасной подсветке он срабатывал даже в темноте. А обмануть его подсунув фотографию глаза владельца было невозможно, так как датчик считывал не только узор радужки глаза, но и мониторил температуру пользователя.

Заключение

Напоследок хочется посоветовать небольшой лайфхак: чтобы сканер лучше распознавал отпечаток, задайте в систему один и тот же отпечаток два раза. Тогда процент попаданий увеличится.

Ну и помимо обычных сканеров отпечатков пальца будем ждать, когда в смартфоны начнут массово вставлять иридосканеры, ведь это ещё больший прорыв в мобильной индустрии. Хотя маловероятно, что такая функция будет в от 70 долларов, но возможно следующие флагманы от Samsung получат такое дополнение.

На сегодняшний день цифровые технологии проникли практически во все сферы нашей жизни: мы в пару кликов совершаем покупки в интернете, кладем и снимаем наличные на банковскую карту, делаем различные операции с виртуальными счетами, а также храним свои фотографии и прочие данные в облачных хранилищах. При всей глобализации цифровых технологий вопрос касаемо защиты персональных данных по-прежнему остается актуальным.

Ни для кого не секрет, что современные продвинутые злоумышленники уже не пользуются ломом и отмычками, а виртуозно используют те же самые цифровые технологии и ПО для своих корыстных целей. Смартфоны по-прежнему остаются уязвимыми, поскольку с его помощью пользователь часто авторизуется в различных онлайн-сервисах. И, если еще вчера защита данных на смартфоне происходила посредством графического ключа или паролей, то в последние годы многие производители начали внедрять разные виды биометрической защиты, которые основаны на уникальности строения определенных частей тела человека. В частности, мы говорим об отпечатках пальцев, геометрии лица, сетчатке глаза, идентификация голоса. Биометрическая аутентификация – это довольно надежный и удобный способ защиты. А главное, такой «пароль» не забудешь, не подсмотришь, к тому же он всегда так сказать под рукой. Сегодня мы поговорим о дактилоскопическом сканере в смартфоне или, иными словами, сканере отпечатков пальцев. Интересно узнать, что из себя представляет это устройство, каких видов бывает сканер, а также как он работает.

Следует отметить, что процесс идентификации с помощью отпечатков пальцев стоит в одном ряду с самыми надежными способами, с помощью которых можно подтвердить личность пользователя. По точности аутентификации сканирование отпечатков пальцев уступает только методу, а рамках которого осуществляется сканирование сетчатки глаза, а также анализу ДНК. Отпечатки человеческих пальцев представлены папиллярными узорами на коже, которые у каждого человека уникальные, причем появляются они внутриутробно, на двенадцатой неделе синхронно с нервной системой. Интересно, что на папиллярные узоры могут повлиять различные факторы, например, это касается генетического кода ребёнка и прочего. Другими словами, папиллярными узорами являются выступы и борозды на коже, которые формируют уникальный и неповторимый рисунок. Даже незначительная травма или повреждение покровов кожи не могут «стереть» отпечаток, поскольку он со временем восстановится, если конечно в результате травмы не снесло пол пальца.

Как работает сканер отпечатка пальцев в современном смартфоне

В сканерах отпечатков пальцев имеются две основные функции. При помощи первой из них сканер считывает изображение отпечатка, в то время как вторая функция проверяет совпадение отпечатка с существующими в базе данных. Практически во всех современных смартфонах применяются оптические сканеры. Принцип их работы схож с цифровыми фотоаппаратами. Снимок делается с помощью микросхемы, куда входят светочувствительные фотодиоды, а также автономный источник освещения в виде матрицы светодиодов, с помощью которой узоры на пальце подсвечиваются.

Когда свет попадает на считываемый папиллярный рисунок, с помощью фотодиодов появляется электрический заряд, в результате чего отдельно взятый пиксель запечатлевается на будущем снимке. С помощью пикселей различной интенсивности на сканере образуется снимок отпечатка пальца. Кроме того, перед тем как сверить отпечаток с базой данных, сканер осуществляет проверку качества снимка.

После получения снимка отпечатка его анализирует специальное программное обеспечение с помощью сложных алгоритмов. К слову, происходит анализ трёх типов узоров отпечатка: дугового, петлевого и завиткового. После того, как ПО определило тип узора, происходит идентификация окончаний линий узоров (разрывы или раздвоения, которые называются минуциями), ведь именно они являются неповторимыми и с их помощью можно осуществить идентификацию владельца устройства. Дальше идет довольно сложный анализ, в рамках которого сканер анализирует положение минуций по отношению друг к другу, с разбитием отпечатка на микроблоки. Примечательно, что в процессе сопоставления сканер не анализирует отдельно взятую линию узора. Сканер определяет совпадение в отдельных блоках и по ним определяет сходство.

Каких типов бывают дактилоскопические сканеры

Оптические сканеры бывают двух основных видов. Что касается первого из них, то он снимает нужную область пальца при посредстве его прикосновения непосредственно к сканеру. Такой тип применяется в «яблочных» смартфонах, начиная с iPhone 5s. В отношении второго типа отметим, что в этом случае пользователь проводит пальцем по оптическому сканеру. В результате получается серия снимков, которые программным обеспечением объединяются в один. Этот тип какое-то время использовала в своих продуктах компания Samsung, однако, со временем она перешла на первый тип, поскольку он более удобен, хотя и более дорогостоящий. Основной недостаток оптического дактилоскопического сканера является уязвимость к царапинам и загрязнению. Также его можно «обвести вокруг пальца» при помощи слепка фаланги пальца.

Стоит также отметить о полупроводниковом типе сканера отпечатка пальца, который в смартфонах не применяется по целому ряду причин. Его невозможно обмануть с помощью слепка пальца. Еще одним типом дактилоскопических сканеров является ультразвуковой сканер. Он отличается большой перспективой развития, а действует он по принципу медицинского УЗИ. Обмануть его практически нереально, так как он способен проникнуть в эпидермальный слой кожи, которые уникален.

Следует отметить, что сканеры могут быть размещены в разных частях смартфона. Многие производители устанавливают сканер отпечатков пальцев на тыльной панели, недавно пошла мода на боковую грань, а компания HMD подготавливает свой новый флагман с интегрированным сканером в дисплей.

Все существующие на сегодняшний день сканеры отпечатков пальцев по используемым ими физическим принципам можно выделить в три группы:

  • оптические;
  • кремниевые (или полупроводниковые);
  • ультразвуковые.

Оптические сканеры

В основе работы оптических сканеров лежит оптический метод получения изображения. По видам используемых технологий можно выделить следующие группы оптических сканеров:

1. FTIR-сканеры - устройства, в которых используется эффект нарушенного полного внутреннего отражения (Frustrated Total Internal Reflection, FTIR) .

При падении света на границу раздела двух сред световая энергия делится на две части: одна отражается от границы, другая — проникает через границу раздела во вторую среду. Доля отраженной энергии зависит от угла падения. Начиная с некоторой его величины, вся световая энергия отражается от границы раздела. Это явление называется полным внутренним отражением . Однако при контакте более плотной оптической среды (в нашем случае поверхность пальца) с менее плотной (в практической реализации, как правило, поверхность призмы) в точке полного внутреннего отражения пучок света проходит через эту границу. Таким образом, от границы отразятся только пучки света, попавшие в такие точки полного внутреннего отражения, к которым не были приложены бороздки папиллярного узора поверхности пальца. Для фиксации получившейся световой картинки поверхности пальца используется специальная камера (ПЗС или КМОП в зависимости от реализации сканера).

2. Оптоволоконные сканеры (fiber optic scanners) - представляют собой оптоволоконную матрицу, каждое из волокон которой заканчивается фотоэлементом.

Чувствительность каждого фотоэлемента позволяет фиксировать остаточный свет, проходящий через палец, в точке прикосновения рельефа пальца к поверхности сканера. Изображение отпечатка пальца формируется по данным каждого из элементов.

3. Электрооптические сканеры (electro- optical scanners) основаны на использовании специального электрооптического полимера, в состав которого входит светоизлучающий слой.

При прикладывании пальца к сканеру неоднородность электрического поля у его поверхности (разность потенциалов между бугорками и впадинами) отражается на свечении этого слоя так, что он высвечивает отпечаток пальца. Затем массив фотодиодов сканера преобразует это свечение в цифровой вид.

4. Оптические протяжные сканеры (sweep optical scanners) в целом аналогичны FTIR-устройствам.

Их особенность в том, что палец нужно не просто прикладывать к сканеру, а проводить им по узкой полоске - считывателю. При движении пальца по поверхности сканера делается серия мгновенных снимков (кадров). При этом соседние кадры снимаются с некоторым наложением, т. е. перекрывают друг друга, что позволяет значительно уменьшить размеры используемой призмы и самого сканера. Для формирования (точнее сборки) изображения отпечатка пальца во время его движения по сканирующей поверхности кадрам используется специализированное программное обеспечение.

5. Роликовые сканеры (roller- style scanners) . В этих миниатюрных устройствах сканирование пальца происходит при прокатывании пальцем прозрачного тонкостенного вращающегося цилиндра (ролика).


Во время движения пальца по поверхности ролика делается серия мгновенных снимков (кадров) фрагмента папиллярного узора, соприкасающегося с поверхностью. Аналогично протяжному сканеру соседние кадры снимаются с наложением, что позволяет без искажений собрать полное изображение отпечатка пальца. При сканировании используется простейшая оптическая технология: внутри прозрачного цилиндрического ролика находятся статический источник света, линза и миниатюрная камера. Изображение освещаемого участка пальца фокусируется линзой на чувствительный элемент камеры. После полной «прокрутки» пальца, «собирается картинка» его отпечатка.

6. Бесконтактные сканеры (touchless scanners) . В них не требуется непосредственного контакта пальца с поверхностью сканирующего устройства.

Палец прикладывается к отверстию в сканере, несколько источников света подсвечивают его снизу с разных сторон, в центре сканера находится линза, через которую, собранная информация проецируется на КМОП-камеру, преобразующую полученные данные в изображение отпечатка пальца.

Полупроводниковые (кремниевые) сканеры

В основе этих сканеров использование для получения изображения поверхности пальца свойств полупроводников, изменяющихся в местах контакта гребней папиллярного узора с поверхностью сканера. В настоящее время существует несколько технологий реализации полупроводниковых сканеров.

1. Емкостные сканеры (capacitive scanners) - наиболее широко распространенный тип полупроводниковых сканеров, в которых для получения изображения отпечатка пальца используется эффект изменения емкости pn-перехода полупроводникового прибора при соприкосновении гребня папиллярного узора с элементом полупроводниковой матрицы.

Существуют модификации описанного сканера, в которых каждый полупроводниковый элемент в матрице сканера выступает в роли одной пластины конденсатора, а палец - в роли другой. При приложении пальца к сенсору между каждым чувствительным элементом и выступом-впадиной папиллярного узора образуется некая емкость, величина которой определяется расстоянием между поверхностью пальца и элементом. Матрица этих емкостей преобразуется в изображение отпечатка пальца.

2. Чувствительные к давлению сканеры (pressure scanners) - в этих устройствах используются сенсоры, состоящие из матрицы пьезоэлементов.

При прикладывании пальца к сканирующей поверхности выступы папиллярного узора оказывают давление на некоторое подмножество элементов поверхности, соответственно впадины никакого давления не оказывают. Матрица полученных с пьезоэлементов напряжений преобразуется в изображение поверхности пальца.

3. Термо-сканеры (thermal scanners) - в них используются сенсоры, которые состоят из пироэлектрических элементов, позволяющих фиксировать разницу температуры и преобразовывать ее в напряжение (этот эффект также используется в инфракрасных камерах).

При прикладывании пальца к сенсору по температуре прикасающихся к пироэлектрическим элементам выступов папиллярного узора и температуре воздуха, находящегося во впадинах, строится температурная карта поверхности пальца и преобразуется в цифровое изображение.


Данные типы сканеров являются самыми распространенными. Во всех приведенных полупроводниковых сканерах используются матрица чувствительных микроэлементов (тип которых определяется способом реализации) и преобразователь их сигналов в цифровую форму. Таким образом, обобщенно схему работы приведенных полупроводниковых сканеров можно продемонстрировать следующим образом:

4. Радиочастотные сканеры (RF- Field scanners) - в таких сканерах используется матрица элементов, каждый из которых работает как маленькая антенна.

Сенсор генерирует слабый радиосигнал и направляет его на сканируемую поверхность пальца. Каждый из чувствительных элементов принимает отраженный от папиллярного узора сигнал. Величина наведенной в каждой микроантенне электро-движущая сила (ЭДС) зависит от наличия или отсутствия в близи нее гребня папиллярного узора. Полученная таким образом матрица напряжений преобразуется в цифровое изображение отпечатка пальца.

5. Протяжные термо-сканеры (thermal sweep scanners) - разновидность термо-сканеров, в которых для сканирования (так же как и в оптических протяжных сканерах), необходимо провести пальцем по поверхности сканера, а не просто приложить его.

6. Емкостные протяжные сканеры (capacitive sweep scanners) - используют аналогичный способ покадровой сборки изображения отпечатка пальца, но каждый кадр изображения получается с помощью емкостного полупроводникового сенсора.

7. Радиочастотные протяжные сканеры (RF- Field sweep scanners) - аналогичны емкостным, но используют радиочастотную технологию.

Ультразвуковые сканеры

Ультразвуковое сканирование - это сканирование поверхности пальца ультразвуковыми волнами и измерение расстояния между источником волн и впадинами и выступами на поверхности пальца по отраженному от них эху. Качество получаемого таким способом изображения в 10 раз лучше, чем полученного любым другим, представленным на биометрическом рынке методом. Кроме этого, стоит отметить, что данный способ практически полностью защищен от муляжей, поскольку позволяет кроме отпечатка пальца получать и некоторые дополнительные характеристики о его состоянии (например, пульс внутри пальца).

Примеры использования сканеров отпечатков пальцев

Основное применение технологии распознавания по отпечаткам пальцев – защита от несанкционированного доступа. Чаще используются в охранных системах и системах учета рабочего времени сотрудников.

Для контроля доступа, сканеры отпечатков пальцев встраивают в ноутбуки, мобильные телефоны, внешние накопители, флэш-карты и т.д. и т.п.